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Preface

The Computational Aeroacoustics (CAA) Workshops on Benchmark Problems have been organized to gauge the
technological advancement of computational techniques to calculate all aspects of sound generation and propagation in air directly
from the fundamental governing equations. The first Workshop, held in 1994, emphasized the basic technical challenges to accurate
CAA calculations. Some of these challenges were the extraction of small acoustic quantities from a large magnitude background
field, the sensitivity of propagating waves to dissipation and dispersion errors over large distances, the usually higher frequencies
of sound versus lower frequency unsteady events, the stability of the calculations over long times to enable spectral calculations,
the proper acoustic boundary conditions at open and solid surfaces, and the nonlinear effects at high Mach numbers.  The benchmark
problems had the simple geometries and the idealized acoustic conditions necessary to test the accuracy and effectiveness of
computational algorithms and numerical boundary conditions. For the second Workshop in 1996, benchmark problems with more
realistic conditions were designed to show the applicability of CAA to solve practical problems, such as, two- and three-dimensional
scattering, radiation from a duct, and gust interaction with a cascade of flat plates. There was also the initial challenge to compute
the sound generated by a separating turbulent flow.

The Third CAA Workshop builds on the emphasis in the second Workshop of computing realistic problems.  The Workshop
was held at the Ohio Aerospace Institute in Cleveland, Ohio, on November 8-10, 1999.  This publication documents the numerical
predictions and comparisons with solutions to the benchmark problems.  Fan noise was chosen as the theme for this workshop with
problems in four of the six benchmark problem categories representing issues involved in computing fan noise.  Recognition is also
given to the fact that as problems become more realistic and more complicated, exact or asymptotic solutions become more difficult
to obtain. Thus, an initial step is made here to compare computational results to data from a well-documented experiment. The
benchmark problems encompassed the following six categories.

Category 1 - Internal Propagation. The propagation of sound through a narrow passage with flow exists in many applications. One
problem models the upstream propagation of sound through a nozzle with near sonic conditions.  The computations must account
for a ten-fold change in wavelength and out-going waves at each end of the nozzle.  In a second problem, a shock is present in the
nozzle making nonlinearities important.

Category 2 - Rotor Noise. The sound field generated by a rotor is affected by its environment. An open rotor will radiate noise. When
placed in a duct, conditions can be such that no noise is radiated; the cut-off condition.

Category 3 - Sound Generation by Interaction with a Gust. Sound is generated when a vortical gust interacts with an airfoil.  This
noise source mechanism exists in turbomachinery applications.  The three problems in this category were designed to show CAA
calculations for a single thick airfoil, a single airfoil with sweep, and a cascade of swept airfoils. In all three cases, a steady mean
flow exists.

Category 4 - Fan Stator with Harmonic Excitation by a Rotor Wake. Rotor-stator interaction is a large source of noise in turbofan
engines. The wakes from a rotor rotating in a cylindrical annulus are represented as a convecting wave of radial vorticity. This wave
interacts with a stator cascade of flat plates to create sound described by its modal content.

Category 5 - Generation and Radiation of Acoustic Waves from a 2-D Shear Layer. In high-speed jets, instability waves become
an important source of radiated noise. The problem was designed to show the ability of CAA to compute the source of this
radiated noise.

Category 6 - Automobile Noise Involving Feedback.  Under certain conditions, the flow over a cavity generates acoustic tones. The
phenomenon depends on the thickness of the approaching boundary layer. Thus, viscosity is an important fluid property. The
challenge is to compute a sound source that is inherent in the fluid dynamics.  Experimental data is provided for comparison to the
computed solution in this category.

Solutions are provided for the benchmark problems in Categories 1 to 5. Even though no CAA computations were
performed for comparison to the solutions of the Category 3, Problem 2, and the Category 4 problems, their solutions are provided
for completeness and in the hope that these problems will be tried in the future.
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Problem 1: Propagation of Sound Waves through a Transonic Nozzle

In a transonic cascade, the local Mach number of the flow in the narrow passages may be close to sonic. The computation of sound
propagating through such regions presents a challenging problem. To reduce the complexity of the problem, but retaining the basic
physics and difficulties, we will model such propagation problems by a one-dimensional acoustic wave transmission problem
through a nearly choked nozzle.

We will use the following as characteristic scales.

length scale = diameter of nozzle in the uniform region downstream of the throat (see figure), D
velocity scale = speed of sound in the same region, a∞.

time scale = 
D

a∞

density scale = mean density of gas in the same region, ρ∞.

pressure scale = ρ∞ a2
∞.

Consider a one-dimensional nozzle with an area distribution as follows
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The governing equations in dimensionless form are,
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The Mach number in the uniform region downstream of the throat is γ = 1.4.

Small amplitude acoustic waves, with angular frequency ω = 0.6π, is generated way downstream and propagate upstream through
the narrow passage of the nozzle throat. Let the upstream propagating wave in the uniform region downstream of the nozzle throat
be represented by

Benchmark Problems—Category 1
Internal Propagation
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Benchmark Problems—Category 1
Internal Propagation (continued)
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where ε = 10�5 . Use a computation domain of size 20, 10 upstream and 10 downstream of the nozzle throat, to calculate the
distribution of maximum acoustic pressure inside the nozzle.

This problem can, of course, be calculated accurately if a very large number of mesh points is used. But this is not always practical.
It is recommended that no more than 400 mesh points be used. Report the locations of your mesh points and the pressure distribution.
Also report the total number of mesh points used.

x = 0, throat

Acoustic
wave M = 0.4

x

Propagation of sound through a transonic throat of a subsonic nozzle.
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Problem 2: Shock-Sound Interaction

In imperfectly expanded supersonic jets, shock-cell structures are formed downstream of the nozzle exit. To simulate the shock-
sound interactions, the problem is simplified as a sound wave passing through a shock in a quasi-1-D supersonic nozzle.

This problem uses the same geometry as Problem 1, but now there is a supersonic shock downstream of the throat.

In this problem, the quasi-1-D Euler equations are solved:
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All quantities are nondimensionalized using the upstream values:
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where D is the nozzle height and a is the speed of sound. γ = 1.4

As before, the domain is �10<x<10, and the area of the nozzle is given by:
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At the inflow boundary, the conditions are:

Benchmark Problems—Category 1
Internal Propagation (continued)
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The pressure will be set at the outflow boundary to create a shock:

( ) . ( )p exit = 0 6071752 6

The data required for this problem is:

1. Grid used for the problem (i,x)

2. On the domain �10.0<x<10.0, give
a. Steady mean distribution x x u x p x, ( ), ( ), ( )ρ( )
b. Perturbation at the start of a period x x x u x u x p x p x, ( ) ( ), ( ) ( ), ( ) ( )ρ ρ− − −( )

3. Over the period of the perturbation, give:

4. Pressure perturbation at the exit plane through one period t p t p t, ( ) ( )−( )
a. The format in FORTRAN is:

format (4(3x, e18.5))

Sound wave

Shock

Sound wave—normal shock interaction.

Benchmark Problems—Category 1
Internal Propagation (continued)
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Comparison between the sound field generated by an open rotor and the sound field generated by the same rotor placed inside
a semi-infinite duct.

The sound field associated with an open rotor and that associated with the same rotor placed inside a semi-infinite duct (see figures
at the end of the problem) can be extremely different. A good understanding of the differences is important in fan noise work.

We will use nondimensional variables with respect to the following scales.

length scale = b (length of blade)
velocity scale = a∞ (ambient sound speed)

time scale = 
b

a∞

density scale = ρ∞ (ambient gas density)

pressure scale = ρ∞ ∞a2

body force scale (per unit volume) = ρ∞ ∞a2

A rotor exerts a rotating force on the fluid. As a model problem, we will replace the rotor by a distribution of rotating body force.
The governing equations are the linearized Euler equations. In cylindrical coordinates (r, φ, x), they are,

∂
∂

= − ∂
∂

+

∂
∂

= − ∂
∂

+

∂
∂

= − ∂
∂

+

∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂

=

v
t

p
r

F

w
t r

p
F

u
t

p
x

F

p
t r

vr
r r

w u
x

r

x

1

1

1 1 0

φ

φ

φ

( )

( )

where (Fr, Fφ, Fx) are the components of the body force.

For simplicity, we will let Fr = 0 and
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where Re{   } is the real part of. For computation purposes, we will use the following body force distribution in r and x.

Benchmark Problems—Category 2
Rotor Noise
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( )F r x
F x rJ r r

r
m mN

φ
λ

= ( ) ≤
>





1

0 1
3

˜ ( , ) ( ) ( )F r x F x J r r
rx

m mN= ( ) ≤
>





λ 1
0 1

4

F x x( ) exp (ln )( ) ( )= −{ }2 10 52

where Jm(  ) is the mth-order Bessel function, λmN is the Nth root of J’m or J’m (λmN) = 0.

In this model, m is the number of blades, Ω is the angular velocity of the rotor. In the ducted case N is the radial mode number.
The choice of the Bessel functions in (3) and (4) has no other significance than making the analytical solution simple.

It is possible to reduce the 3-D problem of (1) to a two-dimensional problem by factoring out the azimuthal dependence. Let

u r x t

v r x t

w r x t

p r x t

u r x t

v r x t

w r x t

p r x t

eim

( , . . )

( , . . )

( , . . )

( , . . )

Re

˜( , . )

˜( , . )

˜ ( , . )

˜ ( , . )

φ
φ
φ
φ

φ



















=







































( )6

The governing equations for ˜, ˜, ˜ , ˜u v w p( ) are found by substituting (2) to (6) into (1) and factoring out eimφ. They are

∂
∂

= − ∂
∂

∂
∂

= − +

∂
∂

= − ∂
∂

+

∂
∂

+ ∂
∂

+ + ∂
∂

=

−

−

˜ ˜

˜
˜ ˜ ( , )

( )
˜ ˜ ˜ ( , )

˜ ( ˜ ) ˜ ˜

v

t

p

r

w

t

im

r
p F r x e

u

t

p

x
F r x e

p

t r

vr

r

imw

r

u

x

im t

x
im t

φ
Ω

Ω
7

1
0

For the open rotor case, it is only necessary to find the outgoing wave solution of (7) in the r-x-plane. In the case of the ducted
rotor, the solid wall boundary condition must be satisfied at the surface of the infinitesimally thin duct wall.

Calculate the directivity, D(θ), of the radiated sound for a 8-blade rotor (m = 8). Set N = 1 (λ8,1 = 9.64742). In spherical coordinates

(R,θ,φ), with the x-axis as the polar axis, the directivity is defined by, (for the ducted rotor, center the coordinate system at the end
of the duct)

Benchmark Problems—Category 2
Rotor Noise (continued)



9NASA/CP—2000-209790

Axis of rotor �

�

�

o

o

x axis

x axis

(a) Open rotor.

(b) Ducted rotor.

R

Semi-infinite duct
4 D

–�

Benchmark Problems—Category 2
Rotor Noise (continued)

D R p R t
R

( ) lim ( , , , )θ θ φ=
→∞

2 2

where  
_________

 is the time average.

Consider two rotational speeds in your computation.

(a) Ω = 0.85 (subsonic tip speed)

(b) Ω = 1.15 (supersonic tip speed)

Report the values of D(θ) at 1 degree intervals.
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Problem 1: Single Airfoil Gust Response Problem

The purpose of this problem is to test the ability of a CFD/CAA code to accurately predict the unsteady aerodynamic and
aeroacoustic response of a single airfoil to a two-dimensional, periodic vortical gust.

Consider the airfoil configuration shown in Figure 1. The airfoil has chord length c and angle of attack α. The upstream velocity
is:

U i a k x i= + ⋅ −( )[ ]∞ ∞U U tcos ( )1

where x = (x1, x2) denotes the spatial coordinates, a = (a1, a2) is the gust amplitude vector with a1 = �ε U∞k2/k, a2 = ε U∞k1/

k, k is the wave number vector, and ε is a small parameter satisfying ε«1.

The governing equations are the 2-D Euler equations

∂
∂

+
∂
∂

+
∂
∂

=
ρ

ρ ρ
t x

u
y

v( ) ( ) ( )0 2

∂
∂

+ ∂
∂

+ + ∂
∂

=
t

u
x

u p
y

uv( ) ( ) ( ) ( )ρ ρ ρ2 0 3

∂
∂

+
∂
∂

+
∂
∂

+ =
t

u
x

uv
y

v p( ) ( ) ( ) ( )ρ ρ ρ 2 0 4

∂
∂

+
∂
∂

+( )[ ] +
∂
∂

+( )[ ] =
E

t x
E p u

y
E p vt

t t 0 5( )

where ρ, u, v, p and Et, denote the fluid density, velocity, pressure, and internal energy per unit volume.

Since the gust amplitude a satisfies a«U∞, one can alternatively solve the linearized unsteady Euler equations

D

Dt
0

0 0 0 6
′ + ′∇ ⋅ + ∇ ⋅ ( ) =ρ ρ ρU u ( )

ρ ρ0
0

0 0 7
D

Dt
p

u
u U U U+ ⋅ ∇



 + ′ ⋅ ∇ ⋅ = −∇ ′ ( )

D s

Dt
0 0

′ = (8)

where 
D

Dt t
o = ∂

∂
+ ⋅ ∇U0  is the material derivative associated with the mean flow, u = (u’,v’), primed quantities are the unknown

perturbation variables, and 0 subscripts denote steady mean flow quantities which must be independently solved for and are assumed
to be known.

Benchmark Problems—Category 3
Sound Generation by Interaction with a Gust
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Nondimensionalize the Euler equations as follows:

x x

u v U

c U

p U

T T

t
c

U

k U
U

c

k k
c

1 2

0

2

1

1 2

2
2

2

,

( , )

( )

,

by
c

2

by

by

by

by

by

by

by

by

U =

=

∞

∞

∞

∞ ∞

∞

∞

∞
∞

sound speed

ρ ρ

ρ

ω

If solving the linearized unsteady Euler equations, nondimensionalize the mean flow variables as above, and the perturbation
variable as follows:

u

a

= ′ ′( )
′
′
′

∞

∞

∞ ∞

∞

∞

u v U

p U

T T

U

, by

by

by

by

by

ρ ρ
ρ 2

For the following two cases, solve the gust response problem for a Joukowski airfoil in a two-dimensional gust with k2 = k1 for
reduced frequencies k1 = 0.1, 1.0, and 3.0. The nondimensional upstream velocity is U = i + εa cos (k • x–k1t), where a = (a1,a2)

= −






2

2

2

2
, . Take ε = .02.

For Case 1, the airfoil has a 12% thickness ratio, free stream Mach number M∞ = 0.5, angle of attack  α = 0°, and a camber ratio
of zero.

For Case 2, change α to 2° and the camber ratio to .02.

The airfoil geometries can be generated as follows. Set

Benchmark Problems—Category 3
Sound Generation by Interaction with a Gust (continued)
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ζ ζθ
1 0 0= + ′r ei (9)

where

ζ ε ε′ = − +0 1 2 10i ( )

is a complex constant. Letting z = x + iy denote the airfoil coordinates in the complex z-plane, the transformation

z
d

e i= +






−ζ

ζ
α

1

2

1
11( )

transforms the ζ1 circle defined by equation (9) into the desired airfoil shape.

For Case 1, use r0 = 0.54632753, ε1 = 0.05062004, ε2 = 0, d2 = 0.24572591, α = 0. Discretize the ζ1 circle in θ, starting from

0 and going to 2π, and then apply equation (11) to get the airfoil coordinates. The values θ = 0 and θ = 2π map into the trailing edge
point.

For Case 2, use r0 = 0.54676443, ε1 = 0.05062004, ε2 = 0.02185310, d2 = 0.24572591, α = 0.034906585. Discretize the ζ1 circle

in θ, starting from 0 = �β and going to θ = 2π�β, β = 0.039978687, and then apply equation (11) to get the airfoil coordinates.

The values θ = �β and θ = 2π�β, map into the trailing edge point.

The above procedure for generating the airfoil geometries will generate Joukowski airfoil of chord length 2, situated very nearly
between x = �1 and x = 1, where x is the nondimensional horizontal spatial coordinate. The airfoil geometries for the two cases are
shown in figure 2.

For both Case 1 and Case 2, march the discrete equations in time until the solution becomes periodic. On the airfoil surface,

calculate the mean pressure p0 and the RMS pressure ′( )p 2.  In the far field, calculate the intensity ′( )p 2  on a circle of radius R

= 8 (four chord lengths), centered at the origin (the airfoil center). State whether the solution is from the Euler equations or linearized
equations. Also state the grid dimensions for each calculation, the number of complete periods computed, the CPU time per period,
and the type of machine on which the calculations were run on.

Output Specification

Submitted solutions to the gust response problem will consist of six files. Each file will be presented in the following format. Line
1 will state the problem number, followed by the name(s) of the submitter(s). Line 2 will state a point of contact, phone number,
and e-mail address. Line 3 will state, “Computed Airfoil Results for Case I, k1=freq, npoints = N”, where
I = 1 or 2, freq = 0.1, 1.0, or 3.0, and N is the number of data points on the airfoil. Both mean and RMS pressure values will be given
as a function of fraction of airfoil chord, (x-x1.e.)/c, where x1.e. is the x coordinate of the airfoil leading edge. Lines 4 through N+3
will be the airfoil results written out in a format of (f12.8,2x,e16.8,2x, e16.8). The first number of each line will be the
fraction of chord value, the second number the corresponding mean pressure, and the third the corresponding RMS pressure value.
Write out the upper surface values first, followed by the lower surface values, beginning each time at the leading edge and proceeding
to the trailing edge. Line N+4 will state “Computed Far-Field Results for Case I, k1=freq, npoints=181”.
The next 181 lines will be the mean square pressure values as a function of polar angle θ on a circle of radius four chord lengths

from the airfoil center (the point on the y-axis midway between the leading and trailing edges). The θ values will begin with 0° and

Benchmark Problems—Category 3
Sound Generation by Interaction with a Gust (continued)
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continue up to 360° in two-degree increments. (A different θ discretization is acceptable so long as “npoints” is specified
appropriately in line N+4.) The far-field results will be written in an (f10.2,2x,e16.8) format, where the first number is the
angle and the second number is the corresponding mean square pressure. The next five lines will state, in order, which equations
were solved, the grid dimensions (i.e., M�N), the number of periods computed, the CPU time per period, and the type of machine
on which the calculations were run on.

Figure 1.—Airfoil in a gust with parallel and vertical components.

U

Uεk2/|k|

Uεk1/|k|

�

–1/2c
+1/2c

x0

x1

x2

Figure 2.—Joukowski airfoil geometry. (a) Case 1. (b) Case2.
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02.5

(b)
1.00.50.0–0.5–1.0–1.5

–02.5

00.0y
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Problem 2: Unsteady Response of an Isolated Finite Span Swept
Airfoil to an Incident Gust

This problem is aimed at testing the ability of CAA methods to calculate the acoustic field generated as a result of the interaction
of a convected (i.e., frozen) harmonic gust with a finite span, swept, flat plate airfoil bounded by two parallel walls.

The coordinate system is chosen so that the x-axis is aligned with the chord of the airfoil (denoted by c), the y-axis is perpendicular
to it and the z-axis is normal to the bounding walls. The origin of the coordinate system is located as shown. The normal distance
between the walls is taken to be �. The sweep of the airfoil is measured by α, the angle between the z-axis and the leading edge of
the airfoil.

The mean flow is assumed to be uniform, unidirectional and aligned with the x-axis, i.e.,

U = = = =( , , ), ( )U U constant, p constant, constant,0 0 0 00 0 1ρ

The appropriate physical scales are:  a0 (the speed of sound) for velocity, ρ0 for density, ρ 0 0a 2  for pressure, c for length and c/a0
for time. The evolution of small perturbations superimposed on the uniform flow is governed by the three-dimensional linearized
Euler equations which, in non-dimensional form, are given by:

∂
∂

∂
∂

∂
∂

∂
∂t

u

v

w

p

x

M u

M u p

M v

M w

M p u

y

v

p

v

z

w

p

w

ρ ρ



















+

+
+

+





















+





















+





















=

0

0

0

0

0

0

0

0

0 0 2( )

where ρ, p, (u,v,w) denote perturbations in density, pressure and velocity components. M0 is the mean flow Mach number.

The incident gust is a small-amplitude harmonic velocity fluctuation of the form

( ) ( , cos ( ( )u,v, w A k x k y k z t), )x y z= + + −0 0 3ω

where kx, ky, kz are the streamwise, transverse and normal gust wavenumbers and ω the harmonic frequency. The bounding walls
and the airfoil are assumed impermeable. These conditions are supplemented by the Sommerfield radiation condition. The non-
dimensional parameters of the problem are given by:

Benchmark Problems—Category 3
Sound Generation by Interaction with a Gust (continued)

Wall spacing �/c = 2.6
Sweep angle α = 15°
Mean flow Mach number M0 = 0.5
Gust amplitude A = 0.05
Frequency ωc/a0 = kxcM0
Chordwise gust wavenumber kxc = 5.5
Transverse gust wavenumber kyc = 0.0
Spanwise gust wavenumber kzc = 3.6m
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Three cases, corresponding to three different gust orientations, are considered: m = 0, m = 1, m = 2. For each case, determine the

rms acoustic pressure (i.e., p prms = 2 ) halfway between the two bounding walls and along a circle that is centered at the point

(0,0,�/2) and has a radius of 5c. The overbar denotes time-averaging over one time period 2π/ω . Note that the long-time asymptotic
solution is required, so run your calculations for sufficiently large t for all the transients to die out. The appropriate FORTRAN output
statement should read “WRITE (IUNIT, *) x, y, prms”.

Benchmark Problems—Category 3
Sound Generation by Interaction with a Gust (continued)
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Problem 3: Unsteady Response of a Rectilinear Swept Cascade to an Incident Gust

This problem is aimed at testing the ability of CAA methods to calculate the acoustic pressure field generated as a result of the
interaction of a convected harmonic gust with a rectilinear cascade of swept flat plates.

All relevant geometric information is the same as problem 2 with the exception of the sweep angle α which is now taken to be
a variable. Assume a cascade stagger angle of zero (with the x-axis aligned with the chord) and a gap-to-chord ratio of h/c =1. The
mean flow Mach number M0 , gust frequency ω, gust amplitude A and chordwise wavenumber kx are the same as in the previous
problem. But for the cascade problem take ky = π and kz = 0.

The appropriate physical scales are also the same as problem 2 as is the governing equation and boundary conditions. Naturally,
the impermeability condition now applies to the entire cascade.

For this problem, determine the amplitude of upstream-radiated rms acoustic pressure as a function of the sweep angle at the
specified frequency. Specifically, show the variations of rms acoustic pressure amplitude at the upstream location (–5c, 0, �/2) for
sweep angle α in the range (0.0°, 30.0°). Use sweep angle increments no larger than 2.5°. Express the results in dB using the rms
pressure value for α = 0.0° as the reference level. The appropriate FORTRAN output statement should read “WRITE (IUNIT, *)
α, 20 log10 (prms(α)/prms(0))”.

c

h

k =    k2 + k2 
x       z√

k�

Impermeable
walls

�

M0

Benchmark Problems—Category 3
Sound Generation by Interaction with a Gust (continued)



17NASA/CP—2000-209790

These problems are simple representations of rotor wake/stator interaction in axial flow fans. They include much of the blade row

scattering/spinning mode propagation physics of the real problem but are still in the realm of Green’s function/panel methods, so
that results can be checked. They are problems that anyone developing a CFD/CAA code for fans might do for code checkout and
should be doable with several codes in existence today. The vane/blade ratio of 3/2 will make the problems easier for codes based
on periodic boundary conditions.

The first cases are for excitation that is nearly 2D (constant along the span). Then, the problem is made progressively more
3-dimensional by varying the phase of the excitation along the span. This simulates the situation (typical of turbofans) where more
than one wake from the rotor intersects a vane at the same time. A high hub/tip ratio case has been added for a check against 2D (S.N.
Smith) theory.

3D results will be checked by comparison with one or more well known panel methods. In particular, Professor M. Namba from
Kyushu University in Japan and Dr. J.B.H.M. Schulten from the National Aerospace Laboratory NLR in the Netherlands will be
asked to provide results from their lifting surface codes.

Benchmark Problems—Category 4
Fan Stator with Harmonic Excitation by Rotor Wake

Mean Flow and Geometry

Assume standard day conditions for speed of sound a0 and pressure p0 and uniform axial flow at Mx = 0.5. The duct is infinite in
both directions with constant outer radius R (which need not enter the calculations) and hub/tip ratio h/R. The stator consists of
constant chord, zero thickness vanes with chords parallel to the fan axis. (If zero thickness causes problems, use 10th standard cascade
airfoils with camber removed. Ordinate information is provided on the CD.) Gap/chord = 1.0 at the tip. Blade/vane counts are B =
16 and V = 24. The duct and the 24 vanes are the only surfaces.

Wake Representation

In the x, r, φ coordinate system, excitation for the problem is a convected wave of radial vorticity representing a harmonic rotor wake.

It produces a velocity perturbation in the φ direction given by (the real part of)

v r x t U V en
inB x U r t

n

( , , , ) ( )/ ( )φ φ θ= + − −[ ]
=

∞

∑ Ω Ω

0

1

U is the axial flow speed a0Mx and Ω is the rotor (and wake) angular velocity. Consider only the blade passing frequency (BPF)
fundamental, n = 1, with upwash amplitude equal to 0.1 radian, Vn = 0.1. Reduced frequency
ωb/U = nB Ωb/U is constant over the span. The function giving the radial dependence is

R

h

x
0

x = b

B = 16
V = 24
h/R = 0.5
(gap/chord)tip = 1.0
M = 0.5

r
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θ π
( ) ( )r

q

B

r h

R h
= − −

−
2

2

θ(R) = –2πq/B is the phase shift along the stator span. For q = 0, the excitation is in phase from root to tip of the stator. When q
= 2, there are 2 wakes intersecting each stator vane, on average. The minus sign leading (2) causes the wake at the stator root to lead
that at the tip as in typical fan designs. In the convention of (1), the inter-vane phase angle is 2πnB/V (counting vanes in the direction
of rotor rotation).

Cases for Computation

Some participants may want to test their codes in a narrow annulus mode first for comparison with the Smith code before moving
on to the 3D cases. Results from the Smith code are available on the CD. The appendix provides background from standard fan noise
theory (Tyler-Sofrin) that was used to determine the 3D cases.

Narrow Annulus

To approximate 2D, run hub/tip ratio h/R = 0.98 and no radial variation, θ(r) = 0. In this case the cutoff ratio of the response waves
is given by

ξ
β

= nB

m

MT ( )3

where m = nB – kV is their spinning mode order and β2 21= − Mx . Run a BPF (n = 1) series around cuton plus two cases well above

cuton as follows

ξ MT   Comments

0.9 0.3897 cut off (sub-resonant)

1.0 0.4330 resonant

1.1 0.4763 m = –8 is cut on

1.5 0.6495 m = –8 is cut on

The chord-based reduced gust frequency ωb/U = nBΩ b/(a0M) = nBΩR/(a0M)b/R  = (2πnB/V)(MT/M) where V = 24 is the vane
count. The duct radius-based acoustic reduced frequency ωR/a0 = nBMT.

To present results, give the complex coefficients A
m
, which are defined by the expression for the pressure perturbation

p x t p A x em
i m nB t

k

( , , ) ( ) ( )φ φ= −( )

=−∞

∞

∑0 4Ω

Do this for axial locations one chord upstream and one chord downstream of the stator (x = –b and +2b) and present results by
filling in the following table with complex values of Am.

Benchmark Problems—Category 4
Fan Stator with Harmonic Excitation by Rotor Wake (continued)

M
T

Upstream Waves, x = –b Downstream Waves, x = +b

m = 40 m = 16 m = –8 m = –32 m = 40 m = 16 m = –8 m = –32

0.3897

0.4330

0.4763

0.6495
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Full Annulus

These are all for h/R = 0.5. The first series is for zero radial phase variation and has the same cutoff ratios as the narrow annulus
case above. They pass through cuton via increases in rotor speed.

q ξ MT
0 0.9 0.470
0 1.0 0.522
0 1.1 0.574
0 1.5 0.783

q ξ@µ = q MT

0 1.50 0.783
0.5 0.783
1.0 1.05 0.783
1.5 0.783
2.0 0.83 0.783
2.5 0.783

3.0 0.65 0.783

The middle column is the cutoff ratio of the acoustic mode with the same number of radial zero crossings as the excitation wave.

Present results as the complex coefficients Anmµ, which are defined by the pressure field modal expansion

p r x t p A x r en nm m
i m nB t

k

( , , , ) ( ) ( ) ( )φ µ µ
φ

µ

= −( )

=

∞

=−∞

∞

∑∑0
0

5Ψ Ω

where Ψmµ(r) is the radial mode shape (discussed below) and, again, m = nB – kV. Do this for axial locations one chord upstream
and one chord downstream of the stator (x = –b and +2b). Present results in modal form by filling in tables like the following for
each condition run.

For participants wishing to minimize the number of cases to run, the highest priority should be the q = 0 and q = 2 cases at MT = 0.783
shown above in bold type.

The mode amplitudes will depend on the convention used for the radial mode shapes Ψmµ(r). These are the duct eigenmodes
described by Tyler and Sofrin. However, for easy comparison with 2D results, a different normalization is used. The extreme value
of each mode is set to +1. The FORTRAN routine that allows Fourier analysis of the pressure perturbation in a constant x-plane to
determine the complex mode amplitudes Anmµ is available on the CD.

Radial mode order µ Upstream Waves, x = -b Downstream Waves, x = +b

m = 40 m = 16 m = –8 m = –32 m = 40 m = 16 m = –8 m = –32

0

1

2

3

4

The second series starts with the ξ = 1.5 case above and progresses through cutoff by increasing the phase variation of the
excitation along the radius. This represents the sweep of a rotor wake.

Benchmark Problems—Category 4
Fan Stator with Harmonic Excitation by Rotor Wake (continued)
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Appendix—Background from Spinning Mode Theory

In the traditional treatment of acoustic waves in annular ducts with uniform axial flow, the pressure disturbance at the nth harmonic
of blade passing frequency can be expressed in the following modal form

p r x t p A r en nm m
i x m nB t

k

nm( , , , ) ( ) ( )φ µ µ
γ φ

µ

µ=
+ −( )∑∑0 6Ψ

Ω

where the circumferential order of the spinning mode order is

m nB kV= − ( )7

Ω is the angular speed of the rotor and Ψmµ(r) are the radial mode functions, which are combinations of Bessel functions. From
the form of the exponential in (6), it can be deduced that the spin Mach number of the mode at the outer wall is

M
nB

m
MS T= ( )8

where MT = (ΩR/a0) is the rotor tip rotational Mach number. Since cuton is determined by the mode spin speed, we must identify
the most cut on mode. The following table, for n = 1 (BPF)

k m nB/m

–1 40 0.40
0 16 1.00
1 –8 –2.00
2 –32 –0.50

shows that the fastest mode is the fundamental interaction mode m = B - V . This is an 8 lobe pattern rotating in the direction opposite
the rotor at twice the rotor speed.

The cutoff ratio is the ratio of the rpm to the cuton rpm. This is given by

ξ
β

= nB

m

M

M
T

m
* ( )9

which is also the ratio of the mode spin speed to the spin speed βM*m at which the mode cuts on. M*m = k’σmµ/m can be computed

by looking up k’σmµ in the Tyler-Sofrin paper. The correction for axial Mach number is β2 21= − Mx . Note that M*m = 1.0 for 2D

cases. The required information for our situation at BPF with an m = –8 mode in a duct with 0.5 hub/tip ratio and 0.5 axial Mach
number is

µ M*m β M*m M*T

0 1.205 1.043 0.522
1 1.725 1.494 0.747
2 2.168 1.877 0.939
3 2.767 2.396 1.198

Benchmark Problems—Category 4
Fan Stator with Harmonic Excitation by Rotor Wake (continued)

where M*T is the rotor tip Mach number for cuton of the -8,µ mode.
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An acoustic source inside of a 2-D jet excites an instability wave in the shear layer resulting in sound radiating away from the
shear layer. Solve the linearized Euler equations to predict the sound radiation outside of the jet. The governing equations are
given by
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and the mean flow variables are given by
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The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis. Use a symmetry boundary
condition along the x-axis.

The length scale is given by the half-velocity distance R1/2. The velocity is scaled by the jet velocity Uj, the density by ρj, the

pressure by ρj U
2

j, and the time and frequency by R1/2/Uj. The constants are given as: P = 101330 (kg/m s2), R = 286.8875 (m2/s2K),

Uj = 517.4569 (m/s), Tj = 166.6667 (K), U∞ = 0, T∞ = 300 (K), Mj = 2, Tj0 /T∞ = 1, γ = 1.4, R1/2 = h + b = 1 (m), h = 0.6 (m), b =
0.4 (m), A = 0.001 (kg/ms3), and B = 8 (1/m2). Calculations are to be made at frequencies with St = 2fR1/2/Uj  = 0.14 and 0.6. The
physical domain is –5 ≤ x/R1/2 ≤ 50 and 0 ≤ y/R1/2 ≤ 10.

Benchmark Problems—Category 5
Generation and Radiation of Acoustic Waves from a 2-D Shear Layer
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y

Source

b

h

x

U

Benchmark Problems—Category 5
Generation and Radiation of Acoustic Waves from a 2-D Shear Layer (continued)

Calculate ′p 2  along the outer boundary at 101 evenly spaced points along the line y/R
1/2

 = 10 over 0 ≤ x/R
1/2

 ≤ 50 and at 16

evenly spaced points along the line x/R
1/2

 = 50 over 2 ≤ y/R
1/2

 ≤ 9.5. Also, calculate p' at 101 evenly spaced points along the

line y /R
1/2

 = 1 over 0 ≤ x/R
1/2

 ≤ 50 at the start of a cycle. Output x/R
1/2

, y/R
1/2

, ′p 2  or p' in FORMAT (3(2X,1P,E14.5)).

Specify the computer used, the total CPU time, the time step size, the total number of time steps, and the total number of grid
points.
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Calculate the frequencies and the sound pressure level in dB of the tones at the center of the left wall associated with the flow of
air over a door gap cavity. Data exists for the geometry and velocities shown in Figure 1. It is known experimentally that two edgetone
frequencies occur between 0 Hz and 2000 Hz and frequencies associated with longitudinal cavity modes occur between 2000 Hz
and 4000 Hz. The boundary layer is turbulent. The boundary layer thickness at the mouth of the cavity is 1.6 cm for U = 26.8 m/s
and 2.2 cm for U = 50.9 m/s. For simplicity, you may use the one-seventh power-law velocity profile given by

u

U

y

0

1

7







= 



δ

,

where δ is the boundary layer thickness. You may do one or both cases.

Benchmark Problems—Category 6
Automobile Noise Involving Feedback

A

C

B

D

U0

A = 15.9 mm
B = 24.7 mm
C = 8.76 mm
D = 3.3 mm

Figure 1.
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Analytical SolutionsAnalytical Solutions
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Solution of Category 1 Problem 2

RAY HIXON
CAA Group, ICOMP

NASA Glenn Research Center
Cleveland, OH 44135

J. Wright
Massachusetts Institute of Technology

Cambridge, MA 02139

In Category 1, the problems are solved using the quasi-1-D Euler equations, given in the con-
served variables as:

(1)

The nozzle is the same for both problems, extending from -10<x<10 with the distribution:

(2)

The problem to be solved is the downstream propagation of an acoustic wave through a shock
wave in a convergent-divergent nozzle. The mean flow is set as:

(3)

and

(4)

The acoustic wave is set at the upstream boundary as:

ρ
ρu
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 
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 
 

=

poutflow 0.6071752=
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(5)

The variables are linearized about a steady mean flow:

(6)

The mean flow is given as a function of the local Mach number as:

(7)

The mean flow is marched in space using:

(8)

The characteristic waves are defined as:

(9)

where A1 is the entropy wave, A2 is the upstream-running acoustic wave, and A3 is the down-
stream-running acoustic wave.

These waves are marched in space using the equations:
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(10)

For marching in space, the 5-6 optimized fourth-order nonlinear Runge-Kutta method of Stanescu
and Habashi is used (ref. 1)

In this calculation, there are three regions to be solved: (1) upstream of the sonic point, (2)
between the sonic point and the shock, and (3) downstream of the shock. These regions are illus-
trated in Figure 1.

Region 1: Upstream of the Sonic Point

In this region, the solution is marched upstream from the sonic point to the upstream boundary. At
the sonic point, the equation for the Mach number changes to:
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(11)

Since the flow goes from subsonic to supersonic at the sonic point, the positive value is used.

There can be no perturbation of the Mach number at the sonic point; thus:

The perturbation equations at the sonic point are:

(12)

Initially, the A1 wave is set to zero at the sonic point and the A3 wave is set to one. After marching
upstream, the amplitude and phase of the A3 wave at the sonic point is set such that the value at
the upstream boundary matches that of the A3 wave imposed at the inflow boundary and the solu-
tion is then calculated.
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Region 2: From the sonic point to the shock

Once the conditions at the sonic point are known, the solution can be marched directly to the
shock location. Note that the second derivative of the area is discontinuous at the sonic point;
thus, the correct value changes depending on the marching direction.

Region 3: From the shock to the downstream boundary

At the shock itself, there are four specified quantities and three unknowns. The four specified
waves are the three upstream waves (A1, A2, and A3) and the upstream-running acoustic wave A2
from downstream of the shock. The three unknowns are the entropy and downstream-running
acoustic waves A1 and A3 behind the shock, and the velocity of the shock itself, V (ref. 2)

At the shock, mass, momentum, and energy must be conserved. The equations at the shock itself
are thus:

1 2 3

A1

A2

A3 A3

A2

A1

A3

A2

A1

Veiωt

Μ<1 Μ<1Μ>1

Figure 1: Three Solution Zones of Category 1 Problem 2
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Figure 2: Mean Pressure Solution
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Figure 3: Perturbation Pressure Solution at the Start of a Cycle
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(13)

(14)

(15)

where the subscript ‘2’ refers to zone 2, upstream of the shock; the subscript ‘3’ refers to zone 3,
downstream of the shock.

In zone 3, the upstream-running acoustic wave must be set. Since it is known that there is no
upstream-running wave from the downstream boundary, the wave is set such that the amplitude is
zero at the downstream boundary.
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Figure 4: Perturbation Pressure Solution through a Cycle at Exit Plane
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Category 3, Problem 1

Single Airfoil Gust Response Problem

James R. Scott
NASA Glenn Research Center at Lewis Field

Cleveland, Ohio

The solution to this problem can be obtained by solving the linearized unsteady Euler
equations. Let the unsteady flow field be given by

�U(�x, t) = �U0(�x) + �u(�x, t) (1)

p(�x, t) = p0(�x) + p′(�x, t) (2)

ρ(�x, t) = ρ0(�x) + ρ′(�x, t) (3)

s(�x, t) = s0 + s′(�x, t) (4)

where the entropy s0 is constant, and �u, p′, ρ′, and s′ are the unsteady perturbation
velocity, pressure, density and entropy, respectively. Zero subscripts denote mean flow
quantities which are assumed to be known.

Substituting (1) – (4) into the nonlinear Euler equations and neglecting products of
small quantities, one obtains the linearized equations

D0ρ
′

Dt
+ ρ′�∇ · �U0 + �∇ · (ρ0�u) = 0 (5)

ρ0(
D0�u

Dt
+ �u · �∇�U0) + ρ′�U0 · �∇�U0 = − �∇p′ (6)

D0s
′

Dt
= 0, (7)

where D0
Dt = ∂

∂t + �U0 · �∇ is the convective derivative associated with the mean flow.
If the mean velocity �U0 can be expressed as the gradient of a potential Φ0, then

equations (5) - (7) can be reduced to a single, non-constant coefficient, inhomogeneous
convective wave equation [1,2]

D0

Dt
(
1

c0
2

D0φ

Dt
)− 1

ρ0

�∇ · (ρ0
�∇φ) =

1
ρ0

�∇ · (ρ0�u
(R)), (8)

where the unsteady velocity is decomposed into a known vortical component �u(R) and an
unknown potential component �∇φ,

�u(�x, t) = �u(R) + �∇φ. (9)
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The unsteady pressure is given by

p′ = − ρ0(�x)
D0φ

Dt
. (10)

An unsteady aerodynamic code, called GUST3D [3], has been developed to solve equa-
tion (8) for flows with periodic vortical disturbances. The code uses a frequency-domain
approach with second-order central differences and a Sommerfeld radiation condition in
the far field. It has been extensively validated on model problems with analytical solutions.

GUST3D requires as input certain mean flow quantities which are calculated sepa-
rately by a potential flow solver. This solver calculates the mean flow using a Gothert’s
Rule approximation [3]. On the airfoil surface, it uses the solution calculated by the poten-
tial code FLO36 [4]. Figure 1 shows the mean pressure along the airfoil surface for Cases
1 and 2.

To calculate the unsteady pressure, GUST3D was run on systematically refined grids
to obtain a converged solution at each frequency. It was found that 24 points per wave-
length was sufficient for convergence. The location of the outer grid boundary was also
varied to check for sensitivity to the far-field boundary condition.

Flat plate results were calculated using the above approach to help assess accuracy.
Figure 2 shows the calculated RMS pressure versus analytical results for a flat plate in
a transverse gust. Two numerical solutions are shown per frequency, each corresponding
to grids with different far-field boundaries. The far-field boundary locations are shown in
number of chord lengths on each figure. The maximum error for each case is also shown
(omitting the first 1% of chord near the leading edge singularity). The acoustic intensity
was calculated using a single-layer-potential Kirchoff method [5]. Kirchoff circles with
radii of 2, 2.25, and 2.5 chord lengths were used to propagate the pressure to the circle of
radius 4.0. The three Kirchoff calculations for each of the two different far-field boundary
locations resulted in six different intensity calculations for each frequency. Figure 3 presents
the most accurate and least accurate of the six calculations to give some indication of the
numerical uncertainty of the results.

The Joukowski airfoil results for Cases 1 and 2 were calculated in the same manner
as the flat plate results. Figure 4 presents the RMS pressures and Figure 5 shows the
corresponding intensity results. The relative numerical uncertainty of each calculation
is also shown. For the RMS pressures, this uncertainty determination did not include
pressure values in the first 1

2% of airfoil chord near the leading edge nor the last 1
2% of

airfoil chord near the trailing edge. Note that there are no RMS results for Case 2, k1 =
3.0, and no intensity results at this frequency for either Case 1 or Case 2. Work is still
ongoing to obtain an acceptably converged solution for these cases.
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Figure 1.a  Mean pressure on airfoil surface − Case 1.

0 0.2 0.4 0.6 0.8 1
x

2

2.25

2.5

2.75

3

3.25

3.5

M
ea

n 
P

re
ss

ur
e

L.E. T.E.

Figure 1.b  Mean pressure on airfoil surface − Case 2.
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Figure 2.a  RMS pressure on a flat plate.  M=0.5, k1=0.1
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Figure 2.b  RMS pressure on a flat plate.  M=0.5, k1=1.0
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Figure 2.c  RMS pressure on a flat plate.  M=0.5, k1=3.0
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Figure 3.a  Acoustic intensity for a flat plate.  M=0.5, k1=0.1
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Figure 3.b  Acoustic intensity for a flat plate.  M=0.5, k1=1.0
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Figure 3.c  Acoustic intensity for a flat plate.  M=0.5, k1=3.0
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Figure 4.a  RMS pressure on airfoil surface, Case 1, k1=k2=0.1

Numerical Uncertainty = 0.14E−4
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Figure 4.b  RMS pressure on airfoil surface, Case 1, k1=k2=1.0

Numerical Uncertainty = 0.65E−4
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Figure 4.c  RMS pressure on airfoil surface, Case 1, k1=k2=3.0

Numerical Uncertainty = 0.1E−3
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Figure 4.d  RMS pressure on airfoil surface, Case 2, k1=k2=0.1

Numerical Uncertainty = 0.54E−4
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Figure 4.e RMS pressure on airfoil surface, Case 2, k1=k2=1.0

Numerical Uncertainty = 0.45E−3
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Category 4—Fan Stator with Harmonic Excitation by Rotor Wake

NUMERICAL RESULTS OF LIFTING SURFACE THEORY

Masanobu Namba
Kumamoto Institute of Technology

Kumamoto, Japan

and

Johan B.H.M. Schulten
National Aerospace Laboratory NLR

Emmeloord, The Netherlands

Introduction

The Category 4 problem of the 3rd CAA Workshop is concerned with the noise resulting from rotor wakes
impinging on a stator. Traditionally, the solution of the rotor-stator interaction noise problem is obtained by the
application of a lifting surface method. These methods are based on the flow equations linearized about a
uniform mean flow and have become a well-established technique. A strong point of lifting surface methods is
the absence of numerical dissipation and dispersion errors, which prevent the application of regular CFD
methods so often for noise problems. Therefore lifting surface results are very suitable as a benchmark test for
CAA methods.

This paper gives the outline of the analytical methods based on the linearized lifting surface theory applied to
Category 4, and the resulting numerical data. Unfortunately no CAA results for this problem were officially
submitted at the 3rd workshop. It will be shown that this problem is worth to be retained as a test case for future
CAA work.

Outline of Lifting Surface Theory

The original lifting surface theories by Namba (refs.1,2) and Schulten (refs.3,4) are formulated for a rotating
annular cascade of straight or swept blades. Just to avoid unnecessary complexity we describe here the
formulation applied to the present problem, i.e., a stator cascade of straight flat plates at zero stagger angle
interacting with oncoming sinusoidal gust. We also use the same notations as those used in the problem
description by Hanson.

Interaction of the stator vanes with an oncoming sinusoidal gust with a circumferential velocity
])(/[

1),,,( trUxiBeUVtxrv Ω−−+Ω= θφφ (1)

produces an unsteady blade loading. The pressure difference across the ν−th blade surface can be expressed as

                 … .1,...,1,0:),( /22
0 −=∆ +− VexrCU VBiti

p νρ πνω
(2)

Here 0ρ  is the ambient air density and Ω= Bω . Then the wave equation for the acoustic pressure generated

from the blades is given by
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The boundary condition at the duct walls is
                     0/ =∂∂ rp   at  Rr =   and  .hr = (4)
The formal solution can be expressed as
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Here the kernel function is obtained as the solution of the following equations:
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0/ =∂∂ rK p   at  Rr =    and   .hr = (7)

The solution is expressed as follows:
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Here µmk  and ,...)2,1,0(:)( =Φ µµ rm  are radial eigenvalues and eigenfunctions respectively of the following

Sturm-Liouville boundary value problem.
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0/)( =Φ drrd mµ   at  Rr =   and  .hr = (11)

The eigenfunctions are normalized as follows:
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Therefore the mode shape function )(rmµΨ  defined in the problem description is given by
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The blade loading function ),( xrC p∆  can be determined from the flow tangency condition on blade surfaces,

which can be expressed by
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where K r x rv ( , , | )φ 0  is the upwash velocity kernel function given by
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The integral equation (14) for ),( xrC p∆  should be solved numerically. Various methods are available. The

methods used for the present problem by Namba and by Schulten are described in Appendix A and B
respectively.
   Finally the modal pressure amplitude )(xAmµ  defined by
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where )4.1(=γ  is the specific heat ratio of air.

Numerical Results

Numerical values of the modal pressure amplitude )(xAmµ  calculated by Namba and Schulten are given in

Table 1 and Tables 2.1 – 2.10. To save space, circumferential wave numbers are confined to the smallest two;
m=16 and m=-8. The other modal pressure amplitudes are extremely small. The agreement between Namba’s
and Schulten’s data is fairly good. The discrepancies will come from various numerical processes in solving the
integral equation (14) and computing integrals in equation (17). In particular the exceptional large discrepancy
observed for MT = 0.433 of the narrow annulus (Table 1) is due to the fact that the condition is very close to the
resonance )0( =Λ µm

of the mode of m = -8, µ = 0.

Table 3 and Figure 1 show a comparison between the unsteady lift coefficient LC  ))/(),(( 10
bVdxxrCp

b
∆= ∫

at mid-span of the narrow annulus cascade and that of the corresponding 2-dimensional cascade. It is clear that
the flow field of the narrow annulus cascade is nearly two-dimensional. On the other hand the validity of the 2D
code used to compute the two-dimensional problems was ascertained from the fact that it exactly reproduces
Figure 5(a) of Hall and Verdon (ref.5), which was computed with Smith’s code.

It should be noted that in the full annulus cases, all modes are cut-off for MT=0.470, only one mode (m=-8,
µ=0) is cut-on for MT =0.522 and MT =0.574, and two modes (m=-8, µ =0), (m=-8, µ =1) are cut-on for  MT

=0.783.  Certainly the amplitudes of cut-off modes are smaller than those of cut-on modes, but they are not
extremely small. This is because the axial positions one chord away from the leading and  trailing edges are not
far enough for the cut-off modes to decay out. Therefore at more distant positions the difference in the
magnitude between cut-on and cut-off modes will be more pronounced. However to compute pressures at such
distant positions by CAA methods may worsen the problem of numerical dissipation and dispersion.



NASA/CP—2000-209790 76

In Figure 2 a comparison is made between the results of Namba and Schulten. The pressure jump distribution
(∆Cp based on ρ0U

2 /2) at mid-span for the full annulus is compared for the highest tip speed of the rotor

investigated in the present study (MT = 0.783). It is clear that the agreement between both methods is very good.
Only in the aft portion of the chord some small discrepancies are visible.
A three-dimensional view on the pressure jump distribution over the whole reference vane is given in Figure 3.
In this case the incident velocity field is in phase along the span (q = 0.0) which is clearly reflected by the
behavior of the pressure jump in the vicinity of the leading edge. In the aft portion of the vane some mild
spanwise variation is discernable which results from the three-dimensionality of the stator.

As shown in Figure 4 the response of the stator is quite sensitive to the spanwise phasing of the impinging
field which is characterized by q = 1.5 in this case. This spanwise periodicity is only recognized in the pressure
jump distribution in the immediate vicinity of the leading edge. Further downstream, the spanwise response is
closer to one full wave length. But the most remarkable observation is the very large amplitude of the response,
which points to some kind of near-resonance behavior. This may have to do with the (intentional, see problem
description) similarity of the excitation with the acoustic radial mode shapes for µ = 1 (cut-on) and µ = 2 (cut-

off) (m = -8).
The contrast with the results for q = 3.0, presented in Figure 4, is striking. It is hardly imaginable that the only

difference in the incident field is a spanwise phasing twice as high as in Figure 3. This phasing can still be
observed in the leading edge portion of the vane but vanishes downstream. It is reconfirmed even stronger that
the spanwise phasing is crucial to the stator response.
The q = 3.0 case was taken for another comparison between Namba’s and Schulten’s results. In Figure 5 the
pressure jump is compared along a spanwise line located at 6 percent of the chord. The agreement is quite
satisfactory but some slight discrepancies near the hub and the casing can be observed. Figure 6 gives the results
along a spanwise line at 20 percent of the chord. Here some more discrepancies are visible, not only at hub and
casing but also in the mid-span region. However, it should not be overlooked that the scale is four times larger
than in the previous figure. It seems as if the spanwise waviness first starts to disappear in the mid-span region.
Note that the pressure jump should have a zero derivative at hub and casing due to the hard wall boundary
conditions [Eq.(4)]. Relatively large discrepancies are observed along the 50 percent line in Figure 7. Only one
full spanwise wavelength can be observed here. Finally, in Figure 8 the pressure jump along the 90 percent line
shows a better, although not a perfect, agreement. In general, it seems that closer to the leading and trailing edges
the agreement is better than in the inner portion of the vane. It is noted that seemingly small discrepancies in the
pressure jump can affect the modal amplitudes more seriously. This may be the reason that, occasionally, the
agreement in the modal amplitudes is not as good as was expected by the authors on beforehand.

Concluding remarks

The Category 4 benchmark problem was successfully computed by two lifting surface methods. The problem
definition was well chosen to include some interesting near-resonance effects.
Comparison of the results of both methods showed good agreement on the whole. It appeared that relatively
small discrepancies in the pressure jump distribution could lead to relevant discrepancies in the modal
amplitudes. It would be helpful if in future CAA benchmarking of the rotor stator interaction problem, attention
will also be paid to the prediction of the pressure jump distribution rather than only to the modal amplitudes.
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Appendix A  Namba’s Method

     The kernel function of the integral equation (14) contains singularities of )/(1 0xx −  and ||log 0xx − . It is

desirable to calculate the principal values analytically rather than numerically. To do so it is necessary to extract
the singular parts from the kernel function. But it is not easy because the eigenfunctions )(rmµΦ  do not

approach to definite values as m goes to infinity.
     To cope with this difficulty Namba (refs.1,2) developed the method of finite radial mode expansion. The
essence of the method is to approximate the eigenfunction by a finite series expansion of the form:
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of the kernel function.
     The unknown blade loading function is expressed in terms of double mode function series:

,2/)cos1(,)sin(
2

cot)(),(
1

1
0

1

0

bxjAArxrC
J

j
j

L

p ξξξ −=








+Φ=∆ ∑∑
−

=
∞

−

=
lll

l

(A2)

and the principal values can be analytically calculated. The problem reduces to algebraic equations for the
coefficients jAl . This formulation also enables us to calculate the integrals in equation (17) analytically.

     The accuracy of the numerical solution essentially depends on the numbers of retained terms L and J.  To
solve the present problem L=21 and J=11 are adopted.  It takes about 65 seconds to compute one case on PC of
Celeron 350 MHz.
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Appendix B  Schulten’s Method

     The first step to the numerical solution of Eq.14 is the representation of the unknown ∆Cp. The chordwise

expansion is identical to Namba’s given in Eq. (A2). However, for the spanwise direction a Chebyshev (1st kind)
series is adopted. This series can be considered as a Fourier cosine series in the variable ψ  where

1)/()(2cos −−−= hRhrψ (B1)

     To solve the integral equation (14) numerically, a Galerkin procedure is followed. This means that both sides
of the equation are projected on a set of orthogonal basis functions. The advantage of a Galerkin method over a
collocation method is that the number of points on the vane surface can be taken (much) larger than the number
of unknowns . The Galerkin method yields the least squares fit to the point values on the vane. The Galerkin
basis functions used are Chebyshev 1st kind for the spanwise direction and 2nd kind for the chordwise direction.
Gauss-Lobatto integration formulae (ref. 6) are used to evaluate the integrals.
     The number of required projections is taken to be sufficient to capture the right hand side to a preset accuracy.
In the present study an accuracy of 0.004 relative to the largest right hand side term was adopted throughout.
Further, the expansions are taken sufficiently large to resolve the shortest acoustic wave lengths upstream and
downstream as well as in spanwise direction. The final criterion is that also the hydrodynamic wave is accurately
resolved. For the most demanding case (MT = 0.783, q = 3.0), the maximum number of required projections was
17 spanwise × 9 chordwise. These numbers were also taken for J and L respectively in the expansion of ∆Cp.

     After taking the Galerkin projections the integral equation turns into a matrix equation the left hand side of
which contains a series in k which essentially is a Fourier series in the circumferential coordinate. This is a
slowly convergent series with terms behaving as 1/k2 asymptotically. To obtain an accuracy of, say, ε = 0.004

with respect to the largest element in its row of the matrix would require something in the order of 1/ε = 250

terms. This would be very hard computationally. Therefore a 2nd order Richardson extrapolation (ref.7) is
applied to the k-series. For the most demanding case (see above) this limits kmax to 18. Nevertheless, the total
computing time for this matrix is about 40 hours on a 300 MHz PC.
     In the present method the evaluation of the infinite radial series over µ as occurring in Eqs. (8) and (15) is

handled quite differently from Namba’s method. As described in ref.4, the series can be replaced by an integral
in the complex α-plane, where α is the wave number in x-direction. By deforming the contour of integration

away from the poles, a smooth integrand is obtained that can be accurately integrated numerically. The only
difficulty is encountered for a case very close to duct mode resonance (cut-on) when the path of integration has
to pass two poles very closely. This integral representation is especially advantageous for vanes of arbitrary
shape. For the unswept vanes with constant chord of the present configuration it is considerably more time
consuming than Namba’s method.
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Tables

Table 1.  Narrow Annulus  q =0
Upstream Waves: x=-b

M=16 m =-8
MT Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten
0.3897 -2.422E-05 -1.930E-05 9.174E-06 8.120E-06 -5.067E-03 -5.407E-03 1.924E-03 2.231E-03
0.4330 -9.952E-05 -8.599E-05 -1.874E-05 -5.001E-06 -1.142E-03 2.083E-03 -2.170E-04 3.459E-04
0.4763 -1.043E-04 -1.033E-04 -7.110E-05 -6.823E-05 -7.603E-03 -7.538E-03 1.837E-03 2.055E-03
0.6495 -8.334E-05 -1.074E-04 -4.261E-04 -4.033E-04 7.577E-03 7.364E-03 -1.814E-03 -2.453E-03

Downstream Waves: x=+2b
m =16 m =-8

MT Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten

0.3897 -6.945E-05 -7.063E-05 3.666E-05 3.999E-05 8.584E-03 8.734E-03 -4.532E-03 -4.943E-03
0.4330 -5.302E-05 -4.718E-05 1.641E-05 8.436E-06 1.715E-02 3.410E-03 -5.298E-03 -6.981E-04
0.4763 -3.587E-05 -3.619E-05 1.999E-05 2.090E-05 1.050E-02 1.061E-02 1.604E-02 1.556E-02
0.6495 2.529E-05 1.903E-05 1.282E-05 5.809E-06 -1.120E-02 -9.946E-03 5.684E-03 5.870E-03

Table 2.1 Full Annulus : q=0, MT =0.470
Upstream Waves, x=-b

m =16 m =-8
Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten
µ = 0 -6.635E-05 -5.482E-05 1.687E-05 1.047E-05 -2.073E-03 -2.881E-03 -1.955E-03 -1.456E-03
µ = 1 -7.690E-06 -8.411E-06 -5.077E-06 -3.579E-06 1.894E-04 2.546E-04 4.300E-04 2.595E-04
µ = 2 -1.500E-06 -1.950E-06 -1.921E-06 -1.272E-06 2.341E-05 3.635E-05 6.261E-05 4.026E-05
µ = 3 -3.851E-07 -5.237E-07 -5.331E-07 -4.021E-07 1.312E-06 1.958E-06 2.356E-06 2.221E-06
µ = 4 -4.975E-08 -7.115E-08 -7.526E-08 -6.257E-08 5.220E-08 8.742E-08 1.119E-07 1.097E-07

Downstream Waves, x=+2b
m =16 m =-8

Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ = 0 -7.287E-05 -6.680E-05 3.060E-05 3.998E-05 9.484E-03 9.296E-03 -4.826E-03 -5.798E-03
µ = 1 -2.814E-06 -3.457E-06 3.402E-06 3.081E-06 -3.249E-06 9.737E-05 -2.600E-04 -1.776E-04
µ = 2 -7.340E-08 -3.810E-07 6.725E-07 4.967E-07 -1.264E-05 -1.055E-07 -2.353E-05 -1.290E-05
µ = 3 3.477E-09 -5.530E-08 1.562E-07 1.054E-07 -1.534E-07 -1.315E-07 -8.371E-07 -4.555E-07
µ = 4 3.018E-09 -2.657E-09 1.857E-08 1.123E-08 -1.415E-08 -1.294E-08 -2.883E-08 -1.219E-08

Table 2.2  Full Annulus : q =0, MT =0.522
Upstream Waves, x=-b

m =16 m =-8
Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten
µ = 0 -1.224E-04 -1.190E-04 -8.522E-05 -5.906E-05 1.792E-02 1.529E-02 1.153E-02 5.181E-03
µ = 1 -3.614E-06 -6.159E-06 -7.968E-06 -1.302E-05 -4.648E-04 -1.110E-05 4.768E-04 1.032E-03
µ = 2 1.995E-07 -5.846E-07 -1.308E-06 -3.141E-06 -5.493E-05 -1.412E-05 3.837E-05 1.073E-04
µ = 3 5.952E-08 -4.987E-08 -2.994E-07 -8.420E-07 -1.006E-06 -9.035E-07 1.465E-06 4.692E-06
µ = 4 9.765E-09 5.772E-09 -3.386E-08 -1.138E-07 -4.796E-08 -5.519E-08 4.262E-08 1.867E-07

Downstream Waves, x=+2b
m =16 m =-8

Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ = 0 -6.237E-05 -7.757E-05 1.613E-06 2.344E-05 3.928E-02 4.724E-02 -5.248E-03 -9.905E-03
µ = 1 -2.969E-06 -7.565E-07 6.235E-06 4.294E-06 6.465E-05 -3.512E-04 -8.589E-04 -4.707E-04
µ = 2 -2.241E-07 4.121E-07 1.726E-06 9.459E-07 -3.234E-06 -4.480E-05 -8.308E-05 -4.237E-05
µ = 3 -3.758E-08 1.651E-07 4.150E-07 2.376E-07 1.173E-07 -1.916E-06 -2.440E-06 -1.623E-06
µ = 4 -2.497E-09 2.756E-08 5.147E-08 3.011E-08 -3.218E-09 -8.002E-08 -9.167E-08 -5.717E-08
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Table 2.3  Full Annulus,  q =0, MT =0.574
Upstream Waves, x=-b

m =16 m =-8
Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten
µ = 0 -8.222E-05 -9.639E-05 -1.274E-04 -1.175E-04 -1.970E-02 -1.725E-02 7.111E-05 4.671E-03
µ = 1 -7.084E-06 -5.057E-06 -8.093E-06 -6.979E-06 -1.293E-05 -4.105E-04 1.297E-04 1.377E-04
µ = 2 -1.488E-06 -8.443E-07 -1.246E-06 -9.783E-07 1.088E-05 -2.539E-05 9.418E-06 4.041E-06
µ = 3 -4.026E-07 -2.110E-07 -3.127E-07 -1.884E-07 1.214E-06 -4.166E-07 1.065E-06 7.052E-08
µ = 4 -5.554E-08 -2.855E-08 -3.953E-08 -1.787E-08 5.876E-08 7.636E-10 3.681E-08 -5.059E-09

Downstream Waves, x=+2b
m =16 m =-8

Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ = 0 -4.189E-05 -4.431E-05 1.166E-05 1.088E-05 6.598E-03 5.028E-03 2.515E-02 2.561E-02
µ = 1 -4.419E-06 -3.181E-06 5.204E-06 6.692E-06 4.831E-04 2.696E-04 -8.430E-04 -1.146E-03
µ = 2 -8.140E-07 -4.852E-07 1.313E-06 1.633E-06 3.338E-05 1.562E-05 -6.704E-05 -9.173E-05
µ = 3 -1.816E-07 -9.871E-08 3.064E-07 4.253E-07 1.042E-06 4.736E-07 -1.848E-06 -3.356E-06
µ = 4 -2.087E-08 -1.003E-08 3.725E-08 5.548E-08 3.322E-08 1.101E-08 -6.705E-08 -1.176E-07

Table 2.4  Full Annulus  q =0, MT =0.783

Upstream Waves, x=-b
m =16 m =-8

Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ = 0 2.541E-04 1.486E-04 -6.945E-04 -6.906E-04 3.493E-03 5.140E-03 1.125E-02 1.056E-02
µ = 1 6.726E-06 6.191E-06 -2.322E-05 -2.409E-05 -6.674E-03 -7.631E-03 -1.811E-02 -1.747E-02
µ = 2 1.188E-06 8.004E-07 -3.107E-06 -3.231E-06 -1.816E-04 -8.145E-05 1.243E-04 1.072E-04
µ = 3 2.634E-07 1.324E-07 -7.104E-07 -7.178E-07 -3.028E-06 -1.370E-06 4.329E-06 4.021E-06
µ = 4 2.739E-08 1.044E-08 -8.201E-08 -8.572E-08 -6.474E-08 -2.451E-08 1.053E-07 1.271E-07

Downstream Waves, x=+2b
m =16 m =-8

Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ = 0 2.088E-05 -3.081E-05 -1.024E-04 -1.007E-04 -1.707E-02 -1.497E-02 -1.594E-03 -2.731E-04
µ = 1 -1.025E-05 -8.833E-06 5.674E-06 5.207E-06 7.702E-03 8.603E-03 1.731E-02 1.564E-02
µ = 2 -1.824E-06 -1.898E-06 1.295E-06 1.428E-06 1.022E-04 1.729E-04 -1.558E-04 -2.034E-04
µ = 3 -3.404E-07 -4.196E-07 2.745E-07 3.240E-07 1.589E-06 3.048E-06 -2.310E-06 -3.024E-06
µ = 4 -3.730E-08 -4.788E-08 3.130E-08 3.878E-08 6.709E-08 8.474E-08 -6.732E-08 -8.943E-08

Table 2.5  Full Annulus  q =0.5, MT =0.783
Upstream Waves, x=-b

m =16 m =-8
Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten
µ = 0 2.295E-04 2.607E-04 5.566E-04 5.036E-04 -7.152E-03 -7.285E-03 1.333E-05 2.304E-05
µ = 1 1.703E-05 2.046E-05 5.059E-06 1.080E-05 1.109E-02 1.241E-02 -1.667E-02 -1.951E-02
µ = 2 3.463E-06 3.173E-06 -2.646E-06 -3.587E-06 -5.908E-04 -2.929E-04 5.684E-04 9.876E-04
µ = 3 8.275E-07 6.741E-07 -8.096E-07 -1.316E-06 -8.793E-06 -5.157E-06 8.222E-06 1.661E-05
µ = 4 5.814E-08 6.093E-08 -9.399E-08 -1.778E-07 3.554E-08 -4.438E-08 1.225E-07 3.835E-07

Downstream Waves, x=+2b
m =16 m =-8

Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ = 0 -1.625E-05 -1.893E-05 -3.463E-05 -2.728E-05 1.132E-02 8.825E-03 -1.370E-02 -1.405E-02
µ = 1 -1.517E-05 -7.840E-06 8.852E-06 1.166E-05 5.529E-03 8.351E-03 2.134E-02 1.706E-02
µ = 2 -1.591E-06 -2.141E-06 -5.765E-07 -8.008E-07 -1.701E-04 2.677E-04 5.495E-04 7.376E-04
µ = 3 -1.457E-07 -5.001E8007 -4.244E-07 -5.714E-07 -2.808E-06 4.390E-06 9.158E-06 1.251E-05
µ = 4 -1.139E-08 -5.981E-08 -5.678E-08 -8.514E-08 -2.334E-09 1.255E-07 1.476E-07 2.690E-07
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Table 2.6  Full Annulus  q =1.0_MT =0.783
Upstream Waves x=-b

m =16 m =-8
Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten
µ = 0 -2.151E-04 -2.711E-04 -2.391E-04 -3.082E-04 1.063E-03 3.948E-03 1.310E-03 1.371E-03
µ = 1 -1.491E-05 -2.915E-05 3.802E-06 1.870E-05 8.336E-03 1.860E-02 1.009E-02 1.338E-02
µ = 2 5.645E-06 7.245E-06 1.242E-06 -1.626E-09 -1.471E-03 -2.266E-03 -7.834E-04 3.048E-04
µ = 3 7.557E-07 1.952E-06 5.352E-07 -1.631E-07 -4.147E-08 -1.947E-05 -1.607E-05 1.823E-07
µ = 4 -6.994E-09 1.789E-07 8.519E-08 -1.049E-09 2.238E-07 -2.077E-07 -3.766E-07 -1.231E-07

Downstream Waves, x=+2b
m =16 m =-8

Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten

 µ = 0 1.419E-04 3.216E-05 -1.141E-04 -1.743E-04 1.987E-03 4.907E-03 9.959E-03 8.607E-03
µ = 1 -3.118E-05 -3.213E-05 -1.251E-05 7.415E-06 -1.679E-02 -5.257E-03 2.178E-02 2.413E-02
µ = 2 1.238E-06 1.370E-06 -4.899E-07 -2.064E-06 -1.635E-03 -1.746E-03 -4.069E-04 8.727E-04
µ = 3 1.155E-06 1.267E-06 1.501E-07 -8.691E-07 -2.597E-05 -2.838E-05 -6.972E-06 1.425E-05
µ = 4 1.567E-07 1.764E-07 2.462E-08 -1.140E-07 -4.218E-07 -4.800E-07 -9.487E-08 2.750E-07

Table 2.7  Full Annulus  q =1.5, MT =0.783
Upstream Waves, x=-b

m =16 m =-8

Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ = 0 2.151E-04 3.234E-04 1.990E-04 1.278E-04 -3.762E-03 -4.124E-03 -2.203E-04 2.379E-03
µ = 1 1.652E-06 -1.293E-05 -1.816E-05 -2.847E-05 -8.479E-03 -1.073E-02 -3.723E-03 5.808E-03
µ = 2 1.008E-06 2.192E-06 5.194E-06 6.159E-06 3.715E-04 -6.205E-04 -1.112E-03 -1.650E-03
µ = 3 7.308E-08 7.286E-07 -5.011E-07 4.380E-07 1.778E-05 2.586E-06 2.463E-05 8.658E-06
µ = 4 -2.661E-07 -1.646E-07 -1.873E-07 -3.530E-08 1.840E-06 1.473E-06 2.679E-07 -7.326E-08

Downstream Waves, x=+2b
m =16 m =-8

Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ = 0 7.441E-05 1.402E-04 1.266E-04 2.861E-05 -1.104E-03 -1.276E-03 -4.053E-03 -1.952E-03
µ = 1 1.771E-06 -1.460E-05 -2.379E-05 -2.232E-05 -1.290E-02 -1.342E-02 -1.786E-03 7.195E-03
µ = 2 -4.071E-07 9.430E-07 1.695E-06 1.643E-06 2.264E-04 -8.604E-04 -1.431E-03 -1.384E-03
µ = 3 -1.939E-07 6.728E-07 1.080E-06 1.071E-06 4.634E-06 -1.351E-05 -2.161E-05 -2.156E-05
µ = 4 -2.658E-08 9.155E-08 1.431E-07 1.454E-07 8.860E-08 -2.293E-07 -3.754E-07 -3.841E-07

Table 2.8  Full Annulus  q =2.0, MT =0.783
Upstream Waves, x=-b

m =16 m =-8

Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ = 0 -1.655E-04 -1.630E-04 -5.795E-05 -3.128E-05 8.854E-04 8.971E-04 -9.089E-05 -2.980E-04
µ = 1 7.105E-06 6.334E-06 -1.076E-06 -3.142E-06 4.251E-03 3.284E-03 -2.294E-03 -1.984E-03
µ = 2 -2.101E-06 -1.869E-06 9.234E-07 1.126E-06 -1.020E-06 -4.847E-05 -1.195E-04 -2.211E-04
µ = 3 1.139E-06 1.113E-06 5.017E-07 5.386E-07 -2.845E-05 -2.699E-05 9.511E-06 8.071E-06
µ = 4 1.707E-07 1.548E-07 -3.971E-07 -3.633E-07 4.429E-07 4.618E-07 2.714E-06 2.503E-06

Downstream Waves, x=+2b
m =16 m =-8

Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ = 0 -9.715E-06 -6.093E-06 -1.819E-05 -8.570E-06 1.026E-03 1.317E-03 3.203E-03 2.805E-03
µ = 1 -8.477E-07 -2.302E-06 -3.636E-06 -4.420E-06 -4.846E-03 -5.003E-03 3.659E-03 4.453E-03
µ = 2 -6.190E-07 -5.247E-07 -2.135E-07 -1.204E-07 1.139E-04 3.086E-05 -7.585E-05 -1.458E-04
µ = 3 -1.372E-07 -8.094E-08 -6.714E-10 5.737E-08 5.670E-07 -5.327E-07 -3.561E-07 -1.646E-06
µ = 4 -1.550E-08 -7.661E-09 -5.687E-10 8.106E-09 3.488E-08 1.104E-08 1.259E-08 -1.193E-08
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Table 2.9  Full Annulus  q =2.5, MT =0.783
Upstream Waves, x=-b

m =16 m =-8

Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ =  0 1.120E-04 1.587E-04 8.099E-05 5.307E-05 -2.015E-03 -2.228E-03 2.092E-05 1.137E-03
µ = 1 2.381E-06 -2.963E-06 -3.944E-06 -8.550E-06 -2.597E-03 -3.704E-03 -1.874E-03 1.704E-03
µ = 2 3.718E-07 7.788E-07 3.257E-07 8.292E-07 1.562E-04 -2.159E-04 -4.155E-04 -6.501E-04
µ = 3 -3.968E-07 -1.115E-07 4.161E-07 7.756E-07 6.050E-07 -5.117E-06 -5.274E-06 -1.060E-05
µ = 4 2.676E-07 2.871E-07 9.914E-09 5.259E-08 -1.620E-06 -1.612E-06 9.243E-07 8.243E-07

Downstream Waves, x=+2b
m =16 m =-8

Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ = 0 3.383E-05 6.089E-05 4.788E-05 9.554E-06 -4.152E-04 -5.593E-04 -2.263E-03 -1.433E-03
µ = 1 6.928E-07 -5.671E-06 -9.390E-06 -9.323E-06 -5.606E-03 -6.059E-03 -4.126E-04 3.095E-03
µ = 2 -2.515E-07 2.610E-07 5.447E-07 5.622E-07 1.079E-04 -3.089E-04 -5.412E-04 -5.530E-04
µ = 3 -9.519E-08 2.353E-07 4.061E-07 4.230E-07 1.625E-06 -5.251E-06 -8.799E-06 -9.154E-06
µ = 4 -1.124E-08 3.304E-08 5.430E-08 5.849E-08 2.289E-08 -9.597E-08 -1.397E-07 -1.539E-07

Table 2.10  Full Annulus  q =3.0, MT =0.783
Upstream Waves, x=-b

m =16 m =-8

Real Imag Real Imag

Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ = 0 -9.928E-05 -1.031E-04 -3.509E-05 -1.889E-05 5.764E-04 6.058E-04 -9.392E-05 -2.580E-04
µ = 1 3.082E-06 2.825E-06 -3.724E-07 -1.612E-06 2.669E-03 2.213E-03 -1.441E-03 -1.365E-03
µ = 2 -4.728E-07 -3.774E-07 6.002E-07 7.317E-07 -9.207E-06 -3.803E-05 -6.399E-05 -1.247E-04
µ = 3 3.721E-07 3.761E-07 -2.232E-08 1.822E-08 -1.089E-05 -1.089E-05 3.008E-06 2.595E-06
µ = 4 4.869E-08 5.559E-08 1.652E-08 1.860E-08 -4.233E-07 -4.470E-07 1.647E-07 1.683E-07

Downstream Waves, x=+2b
m =16 m =-8

Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten

µ = 0 -5.613E-06 -3.755E-06 -1.069E-05 -4.942E-06 6.404E-04 8.712E-04 1.947E-03 1.768E-03
µ = 1 -5.973E-07 -1.508E-06 -2.136E-06 -2.709E-06 -2.955E-03 -3.133E-03 2.274E-03 2.865E-03
µ = 2 -3.657E-07 -3.265E-07 -1.472E-07 -9.456E-08 6.815E-05 2.212E-05 -4.114E-05 -8.419E-05
µ = 3 -8.694E-08 -5.794E-08 -3.965E-09 3.026E-08 5.958E-07 -7.943E-09 -3.561E-07 -1.068E-06
µ = 4 -9.828E-09 -6.417E-09 9.234E-11 4.465E-09 1.807E-08 8.769E-09 -1.317E-09 -1.267E-08

Table 3.  Comparison of lift coefficient between 3D cascade (narrow annulus)
at mid span and corresponding 2D cascade.

3D (Narrow annulus) 2D

MT Real Imag Real Imag

0.3897 -2.263E-01 1.825E-01 -2.336E-01 1.971E-01

0.4330 -4.209E-02 1.064E-01 -4.030E-02 1.039E-01

0.4763 1.273E-02 1.453E-01 1.816E-02 1.413E-01

0.6495 8.959E-02 1.806E-01 9.709E-02 1.586E-01



NASA/CP—2000-209790 83

Figures

Figure 1  Comparison of lift coefficient between 3D cascade (narrow annulus) at mid span and
corresponding 2D cascade. Reduced frequency =(2_B/V)(MT/M)

Fi gu re 2  Re al (le ft ) a nd imagi nar y par t o f mi ds pan  ∆Cp , fu ll  an nul us , q =  0 , MT =  0 .78 3.
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Fi gu re 3  Re al (le ft ) a nd imagi nar y par ts of  ∆Cp , q =  0 .0,  MT =  0 .78 3

       

Fi gu re 4   Real  (l ef t) and  i mag ina ry  pa rts  o f ∆Cp , q =  1 .5,  MT =  0 .78 3

     

Fi gu re 5   Real  (l ef t) and  i mag ina ry  pa rts  o f ∆Cp , q =  3 .0,  MT =  0 .78 3
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Fi gu re 6  ∆Cp  a lo ng x/ c =  0 .06 , q =  3 .0,  MT =  0 .78 3             Fig ure  7  ∆Cp ,  al on g x /c  =  0 .2,  q=3 .0 , MT =  0 .78 3

    

Fi gu re 8  ∆Cp  a lo ng x/ c =  0 .5,  q =  3 .0,  MT =  0 .78 3             Fig ure  9  ∆Cp  a lo ng x/ c =  0 .9,  q =  3 .0,  MT =  0 .78 3





SOLUTION TO THE CATEGORY 5 PROBLEM:
GENERATION AND RADIATION OF ACOUSTIC WAVES FROM A 2D SHEAR LAYER

MILO D. DAHL
NASA Glenn Research Center

Cleveland, OH

A thin free shear layer containing an inflection point in the mean velocity profile is inherently unstable.
Disturbances in the flow field can excite the unstable behavior of a shear layer, if the appropriate combination
of frequencies and shear layer thicknesses exists, causing instability waves to grow. For other combinations
of frequencies and thicknesses, these instability waves remain neutral in amplitude or decay in the down-
stream direction. A growing instability wave radiates noise when its phase velocity becomes supersonic
relative to the ambient speed of sound. This occurs primarily when the mean jet flow velocity is supersonic.
Thus, the small disturbances in the flow, which themselves may generate noise, have generated an additional
noise source. It is the purpose of this problem to test the ability of CAA to compute this additional source of
noise.

The problem is idealized such that the exciting disturbance is a fixed known acoustic source pulsating at
a single frequency. The source is placed inside of a 2D jet with parallel flow; hence, the shear layer thickness
is constant. With the source amplitude small enough, the problem is governed by the following set of linear
equations given in dimensional form.
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(
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We begin the analysis to solve for the pressure disturbances by nondimensionalizing the above set of
equations. The physical coordinates are scaled by the half-velocity distance R1/2. The velocity is scaled
by the jet velocity Uj, the density by ρ j, the pressure by ρ jU2

j , and the time and frequency by R1/2/Uj.
The equations are then combined into a single, nondimensional, third-order, inhomogeneous differential
equation.
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If the source term in equation (5) is defined as

S(x,y, t) = A∗e−B∗ ln2(x2+y2)e−iωt , (6)
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where A∗ = AR1/2/ρ jU3
j and B∗ = BR2

1/2, then the solution to equation (5) is given by the real part of the
complex disturbance pressure p. (Note that the real part of equation (6) is the source term in equation
(4).) The approach that follows constructs an integral equation using a Green’s function that solves for p in
equation (5).

Assume that the solution is harmonic with the source term. After differentiating with respect to time and
dividing through by e−iωt , equation (5) becomes(

−iω+ ū
∂
∂x

)3
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j
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where
S1(x,y) = (−iω−2B′xū(y))A∗e−B′x2

e−B′y2
(8)

and B′ = B∗ ln2.
Defining the Fourier transform of the x variable as

p̃(k,y) =
1

2π

∞

−∞

p(x,y)e−ikxdx, (9)

the transform is applied to equation (7) and the results rearranged to obtain

∂
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Equation (10) has the form of a Sturm-Liouville equation.

∂
∂y

[
a

∂p̃
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]
+bp̃−λcp̃ = f (k,y) (11)

The solution of this equation is expressed as the integral

p̃(k,y) =
∞

0

f (k,yo)G̃(k,y;yo)dyo (12)

where G̃(k,y;yo) is the Green’s function that solves

∂
∂y

[
a

∂G̃
∂y

]
+bG̃−λcG̃ = δ(y−yo) (13)

subject to the same boundary conditions as apply to p̃ in equation (11). These conditions are symmetry at
y = 0 and outgoing waves as y → ∞.

The Green’s function derived from equation (13) has the form

G̃(k,y;yo) =
Ao(k,yo)
∆(k,yo)

[ζ2(k,yo)ζ1(k,y)H(yo−y)+ζ1(k,yo)ζ2(k,y)H(y−yo)] (14)
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where
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and H is the step function defined as
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

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1
2 , z = 0
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From the boundary condition at y = 0, ∂ζ1/∂y = 0 and as y → ∞, ζ2 → exp(ivy) where v =
√

k2
∞ −k2 and

k2
∞ = ρ̄∞M2

j ω2. The branch cuts associated with v are chosen such that −π/2 < arg(v) < π/2 to insure
outgoing waves.

It is now a matter of substituting both f (k,yo) and G̃(k,y;yo) into equation (12) and applying the inverse
Fourier transform
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to get the general integral solution for the disturbance pressure
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To obtain this equation, equation (8) was used to complete the integration in f (k,yo).

f (k,yo) = − S̃1(k,yo)
(ω− ū(yo)k)2

= − 1
2π(ω− ū(yo)k)2

∞

−∞

S1(xo,yo)e−ikxodxo

= − iA∗

2π(ω− ū(yo)k)

√
π
B′ e

−B′y2
oe−k2/4B′

(19)

One major goal of this problem is to compute the pressure disturbance generated by a growing instability
wave excited in the shear layer by the acoustic source. The instability wave comes from the homogeneous
solution to equation (10). Hence, we have an eigenvalue problem where a nonzero solution exists at k equal
to the eigenvalue α and p̃ has the form of the eigenfunction ζ. In the limit as k → α, both ζ1 and ζ2 → ζ
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giving the result in equation (15) that ∆(k,yo) = ∆o(k) = 0 for all yo. Thus, a simple pole exists at k = α in
equation (18) and the solution for the inverse Fourier transform can be determined by residue theory. The
instability wave solution for the pressure disturbance is

pα(x,y) = A∗M2
j

√
π
B′

× e−α2/4B′
ζ(α,y)




∞

0

ρ̄(yo)(ω− ū(yo)α)
ζ(α,yo)

∂∆(α,yo)/∂y
e−B′y2

odyo


eiαx (20)

The total solution for the pressure disturbance with a growing instability wave is the sum of pg(x,y)
and pα(x,y) given by equations (18) and (20). Outside of the jet, this represents the pressure disturbances
generated by the instability wave and the disturbances that are generated directly by the source and propagate
outward through the jet flow. If the pressure was to be computed in the far field, then the inverse Fourier
transform in equation (18) could be found by using asymptotic methods. But the solution is desired close to
the jet flow, hence the integrals must be computed numerically.

Solution for St = 0.14

The path of integration to numerically solve for the inverse Fourier transform in equation (18) is shown
in Figure 1. The horizontal path slightly deviates from the real axis to avoid the branch cuts and insure that
the outgoing wave boundary conditions are satisfied. In addition, this path also attempts to avoid the real
axis where ω− ū(yo)k = 0. The vertical portion of the path is traversed twice in opposite directions resulting
in no contribution from the integration along this section of the path. Thus, the total solution is the sum of
the numerical integration of equation (18) along the horizontal path plus the residue solution at k = α given
by equation (20).

The problem statement asked for the computed pressure disturbance in the x-direction at y/R1/2 = 1. As
of the workshop, the method of numerically integrating equation (18) has not been proven to converge to a
reliable solution. Hence, Figure 2 shows only the growing instability wave solution. The eigenvalue for this
instability wave is α = 0.61489− i0.067236.

Outside of the jet, the numerical integration converged to a consistent solution. The computed mean
square pressures are shown in Figure 3 in the x-direction at y/R1/2 = 10 and in the y-direction at x/R1/2 = 50.

Solution for St = 0.60

At a Strouhal number of 0.60, the flow conditions and the shear layer width do not support a growing
instability wave. Thus, only equation (18) is used to compute the pressure disturbance outside of the jet and
only the horizontal path of integration is followed in Figure 1. The result for the mean square pressure are
shown in Figure 4.
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Figure 3: Mean square disturbance pressure outside of the jet at St = 0.14 with growing instability wave.
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Figure 4: Mean square disturbance pressure outside of the jet at St = 0.60, acoustic source only.
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CATEGORY 6
AUTOMOBILE NOISE INVOLVING FEEDBACK -

SOUND GENERATION BY LOW SPEED CAVITY FLOWS

BRENDA HENDERSON
Kettering University

Mechanical Engineering Department
Flint, MI

Abstract

The category 6 problem involves the calculation of interior sound pressure levels produced by the flow
of low speed air over a deep cavity.  The cavity geometry is similar to the one occurring in vehicle door
gaps.  The velocity of the approach flow ranges between 26.8 m/s and 50.9 m/s.  In this study, experimental
data is obtained for comparison with numerical results.  Multiple discrete frequencies occur for a range of
approach flow velocities and for both “thick” and “thin” boundary layers.  These tones appear to be
associated with both fluid dynamic and fluid resonant oscillations.

Introduction

The discrete frequency sound produced by the flow of air over cavities is part of a feedback loop. The
oscillating shear layer crosses the cavity mouth, impinges on the trailing edge of the cavity, and causes an
oscillating mass flow rate in the region of the cavity mouth.  Sound is produced by the interaction of the
shear layer with the trailing edge wall or by the oscillating mass flow rate in the cavity mouth region. The
sound feeds back to the cavity entrance and excites the oscillations of the shear layer, thus closing the
feedback loop.

The oscillations occurring in cavity flows can be categorized as fluid-dynamic, fluid-resonant, or fluid-
elastic1.  Fluid-dynamic oscillations arise from the instability of the shear layer in the cavity mouth. Fluid-
resonant oscillations are the result of, or are enhanced by, resonant waves within the cavity. Depending on
the cavity geometry, either longitudinal waves (waves traveling between the leading edge and trailing edge
walls) or transverse waves (waves traveling between the cavity floor and mouth) can be excited1. Fluid
elastic resonance occurs when fluid resonance is enhanced by oscillations of the cavity surfaces.

The type of fluid resonant behavior displayed by cavity flows depends on the cavity geometry (see
Fig. 1). Shallow cavities, cavities with depth to length ratios less than one (D/L < 1), can produce
longitudinal waves. These cavities often produce flow that separates from the leading edge, and reattaches at
the base of the cavity2,3,4. Deep cavities, cavities with a depth to length ratio greater than one (D/L > 1), can
produce transverse waves3. For the case of steady flow in deep cavities, the separated flow no longer
reattaches to the cavity floor and a general vortex system exists in the cavity2.

A number of models exist for predicting the frequency of discrete tones in cavity flows1,4,5,6. The
agreement between experimental data and predictions based on these equations depends on the speed of the
approach flow.  Some experiments also indicate that the frequency of tones can be somewhat dependent on
boundary layer thickness7.

The benchmark problem for category 6 is the numerical simulation of flow for a deep cavity with an
overhang at the cavity entrance. The numerical results are to be compared to experimental results obtained
in this study.
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Problem Statement

The geometry used for the category 6 problem is shown in Fig. 2.  The boundary layer is turbulent with
a boundary thickness of 1.6 cm at an approach velocity of 26.8 m/s, and 2.2 cm at an approach velocity of
50.9 m/s.  A one-seventh power-law velocity profile may be used for simplicity.  Compare numerical results
for sound pressure level values at the center of the left wall with experimental values for approach flow
velocities between 26.5 and 50.9 m/s.

Experiment

The cavity studies were conducted in a recirculating wind tunnel with an 18”x18”x48” test section. The
tunnel is equipped with silencers before and after the fan to reduce sound pressure levels in the flow.

For the experiments in this investigation, the top surface of the wind tunnel test section was replaced
with a cavity assembly containing the cavity shown in Fig. 2. The width of the cavity was 25 cm.  Two 1/4”
type TMS140BP and TMS140BF G.R.A.S. condenser microphones were mounted flush with the left wall.
The signals from the microphones were analyzed on an HP 35670A dynamic signal analyzer.  A flat top
window was used for the FFT analysis.

Prior to acquiring the sound-pressure level data, a boundary layer study was conducted with a hot-wire
anemometer.  Based on the results obtained, two streamwise locations in the test section were chosen for the
cavity experiments to determine the effect of boundary thickness on the onset of instability.  The boundary
layer thickness at the first location was 2mm at 30 m/s, and 1.2 cm at 50 m/s.  For the second location, the
boundary-layer thickness was 2 mm at 30 m/s, and 1.2 cm at 50 m/s.  The boundary layer values at the
second location were close to those given in the problem statement.  It was not possible to obtain the exact
boundary layer thickness prescribed in the problem statement without artificially increasing the roughness
of the tunnel surfaces. These two studies are referred to as “thick” and “thin” boundary layer studies in the
following sections.

Results

The sound pressure levels associated with the thin and thick boundary layer studies are shown in Figs. 3
and 4.  As often occurs for cavities with entrance overhangs8,9, multiple discrete tones are observed in the
spectra.  The number of discrete tones produced by the cavity flow depends on the flow speed and the
boundary layer thickness.  One tone is often associated with fluid-dynamic oscillations while other tones are
likely the result of resonance within the cavity.  In addition to the expected transverse waves in the cavity,
an additional type of tone occurs that does not appear to be related to fluid-dynamic oscillations, expected
frequencies for transverse waves, or expected frequencies for longitudinal waves8. These tones may be the
result of longitudinal wave motion restricted to the cavity mouth region or other cavity modes that are
unique to this type of cavity geometry.

The discrete frequencies for the spectra of Figs. 3 and 4 are shown in Tables 1 and 2. The tones have
been categorized by resonance mode. Fluid-dynamic tones and transverse wave frequencies have been
identified by comparison with other published data and analytical results. Correlation studies were not
performed in this investigation.

For the tones associated with fluid-dynamic resonance, the convection speed of the disturbances in the
cavity mouth were determined using a simple hydrodynamic model resulting in5






 −−=

π
φ
24

1ncbfn ,

where f is the measured frequency of sound, n is the mode number, b is the length of the cavity mouth, φ is a
phase angle which accounts for the possibility of a phase shift between the interaction of the disturbance
with the edge and the response of the shear layer to the encounter, and c is the convection speed of the
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disturbances in the cavity mouth.  For low speed flows, good agreement between this equation and
experimental values is obtained when φ = 0. The values for c in Table 1 and 2 range from approximately
43% to 50% of the mean stream velocity. The theoretical value for the convection speed of the disturbances
is 50% of the mean stream velocity but experimental values are usually slightly lower. This is an indication
that these tones are likely the result of fluid-dynamic oscillations. The slightly higher value for c associated
with the thick boundary layer and an approach flow velocity of 40 m/s is probably due to breadth of the
peak around 1760 Hz. For the thin boundary layer at the same speed, a double peak occurred in the
spectrum with frequencies that were quite close together. The broad peak for the thick boundary layer may
have masked the double peak and resulted in slightly higher calculated convection speed.

The peaks associated with transverse waves have been identified by comparison with published data3.

The critical dimensionless numbers for this type of tone are 
a

Dfwave  and 
L
D

, where wavef  is the

frequency of the discrete tone, D is the cavity depth, and L is the cavity length. Good agreement between
these experiments and other published data is obtained when the cavity mouth opening is used for L.

One additional consideration should be made when directly comparing numerical results to experimental
results. When multiple tones occur in the spectrum, the preferred or dominant mode often changes
randomly. This can result in a change of 3 dB or more in the peak sound pressure levels.

It is possible to determine some of the effects of boundary layer thickness on the production of discrete
tones by comparing Figs. 3 and 4 as well as Tables 1 and 2. For the thin boundary layer study, well defined
discrete frequencies occur consistently for approach flow velocities greater than or equal to 30 m/s.  For the
thick boundary layer study, well defined discrete frequencies do not appear consistently until the approach
flow velocity reaches 35 m/s.  The magnitude of the discrete peaks and the shape of the spectra are also
somewhat affected by the thickness of the boundary layer.

Conclusions

Multiple discrete frequency tones often occur for cavities with overhangs at the mouth entrance. The
tones can be associated with fluid-dynamic resonance and transverse modes within the cavity. An additional
discrete frequency tone has been identified and may be the result of other cavity modes unique to this cavity
geometry.

The thickness of the boundary layer at the cavity entrance influences the onset of instability. Thinner
boundary layers produce resonance at lower approach flow velocities than thick boundary layers. The peak
sound pressure level and the shape of the spectra are also somewhat affected by boundary layer thickness.
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Figure 1.  General cavity dimensions.

Figure 2.  Cavity geometry used for the category 6 problem.
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Frequency (Hz)

Figure 3.  Sound pressure level data for the thin boundary layer study.

Frequency (Hz)

Figure 4.  Sound pressure level data for the thick boundary layer study.
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Table 1.  Peak sound-pressure levels measured for the thin boundary-layer studies. Bold numbers
are associated with fluid-dynamic resonance and italic numbers are associated with transverse
cavity waves. The origin of the other tones is unknown.
Approach Velocity (Uo)

(m/s)
Frequency

(Hz)
Amplitude

(dB)
Convection Speed (u)





oU

u

60 2096
2288

137
123 0.45 Uo

50 1824
3648

144
111

0.43 Uo

40 1760 126 0.52Uo

30 1264
1664
3520

105
95
90

0.49 Uo

20 768
1872
2368
2864

83
89
89
82

0.45 Uo

Table 2.  Peak sound-pressure levels measured for the thick boundary-layer studies. Bold numbers
are associated with fluid-dynamic resonance and italic numbers are associated with transverse
cavity waves. The origin of the other tones is unknown.
Approach Velocity (Uo)

(m/s)
Frequency

(Hz)
Amplitude

(dB)
Convection Speed (u)





oU

u

60 2000
2288

144
121 0.45 Uo

50 1824
2016
2848
3552

134
113
106
111

0.43 Uo

40 1520
1632
400

110
112
103

0.44 Uo

or 0.48 Uo

30 No well defined
peaks

26.8 928
1168
1890
1984

97
99

103
101

0.51 Uo
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DISCONTINUOUS SPECTRAL ELEMENT SOLUTION
OF AEROACOUSTIC PROBLEMS

Patrick Rasetarinera, DAVID A. KOPRIVA1 and M.Y. Hussaini1

Program in Computational Science and Engineering
The Florida State University, Tallahassee, FL 32306

1 Introduction

In this paper, we present solutions to the Problem 1, Category 1 and Problem 1, Category 3
benchmark problems. Both problems are characterized by multiple length scales. The first describes the
propagation of acoustic waves in a nearly choked quasi-one-dimensional, converging-diverging nozzle.
In the throat portion of the nozzle the acoustic wavelengths are an order of magnitude smaller than
elsewhere. The second problem models the acoustic response of an airfoil to a gust where the scales
include the airfoil cord length, the incident gust wavelength and the extent of the mean flow.

We solve these multiple scale problems with a discontinuous spectral element method (DSEM). Spectral
element methods in general are high order, flexible extensions of the spectral collocation method [2].
Like finite volume or finite element methods, complex geometries are subdivided into multiple elements.
Within each element, the solution is approximated by an orthogonal polynomial expansion. Local
resolution of the solution can be increased either by decreasing the size of the elements or by increasing
the order of the polynomials. The particular method used here is a high order spectral element version
of the discontinuous Galerkin method.

For the benchmark problems, discontinuous spectral element methods have practical advantages over
high order finite difference methods. They are designed to handle complex geometries, and can
use unstructured element grids generated by commercial mesh generation codes [4]. Though block
structured finite difference methods permit solutions in complex geometries, DSEM’s are not restricted
to meshes with smooth metrics. Also, DSEM’s approximate boundary surfaces to the same high order
as the solution. Cartesian mesh finite difference methods, for instance, do not.

Unlike high order finite difference methods, spectral element methods are compact. Their stencil resides
within an element, independent of the approximation order. This means that there are no ghost point
issues to complicate the approximation and implementation of boundary conditions. Also, elements
can be sized according to the needs of the solution without regard to the size of neighboring elements.

1Also Department of Mathematics and SCRI.
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This gives complete flexibility for changing element sizes, unlike high order finite difference methods
for which changes in mesh sizes by factors of two are most convenient.

Spectral element methods are robust. Unlike centered finite difference methods, they do not require
the addition of specially tuned artificial dissipation. Also, the discontinuous spectral element method
described here does not require special treatment of corner points. This means that special programming
is not needed for complex grid topologies or for sharp edges.

Finally, spectral element methods have spectrally small phase and dissipation errors. Waves can
propagate over a large number of wavelengths with a minimal number of points per wavelength while
keeping the flexibility described above. Examples can be found in the first and second CAA workshop
papers [5],[1]. An analysis of the phase and dissipation errors of the discontinuous Galerkin method
has also been performed recently in [3],[8]. In the first paper it was shown that for polynomial orders
of six to eight, only five to six points per wavelength are needed. If one uses polynomial orders between
8 and 16, only four to five points per wavelength are needed.

2 The Solution Approach

2.1 The Equations

To solve the benchmark problems, we approximate the nonlinear compressible Euler equations of gas-
dynamics in conservative form. For the Category 3 problem, the equations solved are

Qt +∇ · F = Qt + Fx +Gy = S (1)

Explicitly, we have

Q =



ρ
ρu
ρv
ρe


 F =




ρu
p+ ρu2

ρuv
u(ρe+ p)


 G =




ρv
ρuv

p+ ρv2

v(ρe+ p)




We assume an ideal gas with ρe = p/(γ− 1)+ (u2+ v2)/2 and γ = 1.4. The quantity S right hand side
of (1) represents a source term.

In the one space dimension Category 1 problem, eq. (1) reduces to

Qt + Fx = S (2)

where

Q =


 ρA
ρuA
ρeA


 F =


 ρuA
(ρu2 + p)A
u (ρe+ p)A


 S =


 0
−pAx

0



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2.2 The Discontinuous Galerkin Spectral Element Method

In two space dimensions, the region under consideration is divided into non-overlapping elements. The
elements can have a general quadrilateral shape to permit the accurate resolution of curved boundaries
with a minimum number of elements. Each element is mapped individually onto the unit square by an
isoparametric transformation. (See, e.g. [6].)

On each element, the mapping transforms eq. (1) to

Q̃t +∇ξ · F̃ = Q̃t + F̃ξ + G̃η = S̃ (3)

The new variables are Q̃ = JQ, S̃ = JS and

F̃ = yηF − xηG G̃ = −yξF + xξG

J(X, Y ) = xξyη − xηyξ

(4)

The discontinuous Galerkin version of the spectral element method approximates the solution and the
fluxes by the N th order polynomials

Q̃ (ξ, η) =
N∑

µ,ν=0

Q̃µ,νφµ,ν , F̃ (ξ, η) =
N∑

µ,ν=0

F̃µ,νφµ,ν (5)

where φµ,ν = �µ (ξ) �ν (η). The Lagrange interpolating polynomials, �i, are defined at the Legendre
Gauss quadrature points. The nodal values of the flux are computed from the nodal values of the
solution, i.e. F̃i,j = F̃

(
Q̃i,j

)
. No assumptions are made about the continuity of the solution, Q̃, across

element boundaries.

In this approximation, the residual is required to be orthogonal to the approximation space within an
element, so (

Q̃t, φi,j

)
+

(
∇ξ · F̃, φi,j

)
=

(
S̃, φi,j

)
i, j = 0, 1, . . . , N (6)

where (·, ·) represents the usual L2 inner product.

Integration of (6) by parts gives

(
Q̃t, φi,j

)
+

∫
∂E

φi,jF̃ · N̂dS −
(
F̃,∇ξφi,j

)
=

(
S̃, φi,j

)
i, j = 0, 1, . . . , N (7)

where ∂E represents the boundary of the element.

To obtain equations for the nodal values of the solution, Q̃i,j, the integrals in (7) are replaced by
Legendre-Gauss quadratures, which have the property that

1∫
−1

v (ξ, η) dξdη =
N∑

i,j=0

v (ξi, ηj)wiwj ∀v ∈ P2N+1,2N+1 (8)
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The replacement is exact provided that the element sides are straight. If the sides are curved, however,
an additional quadrature error is incurred, just as in the C0 spectral element method [7]. The advantage
gained by using quadrature is that the mass matrix remains diagonal and trivially invertable. This
makes the use of high order elements practical and efficient for wave-propagation problems.

After some manipulation, the final approximation in two space dimensions is

dQ̃i,j

dt
+

[
F̃ (1, ηj)

�i (1)

wi
− F̃ (0, ηj)

�i (0)

wi
− ∑

µ

F̃µ,j

(�′i, �µ)N
wi

]
+


G̃ (ξi, 1) �j(1)

wj
− G̃ (ξi, 0)

�j(0)

wj
− ∑

µ

G̃µ,j

(
�′j , �µ

)
N

wj


 = S̃i,j

(9)

where the discrete inner product is the Gauss quadrature

(u, v)N =
N∑

i=0

uiviwi. (10)

Note that if the approximating polynomial order is zero, (9) reduces to a first-order finite-volume
method.

The flux quantities F (1, ηj), F (1, ηj), G (ξi, 1), G (ξi, 0), in (9) represent the element boundary fluxes.
As in a finite volume approximation, the solutions are discontinuous at element faces. A Riemann
solver is used to compute a continuous flux at the element faces from the discontinuous solution values.
For the computations presented here, we have used Roe’s approximate Riemann solver [9].

The semi-discrete approximation, (9), is integrated in time by a low storage Runge-Kutta method.
Both third and fourth order methods are used.(Cf. [6])

2.3 Steady-State computation

For both the Category 1 and Category 3 problems, the steady solution is computed first. Once the
steady solution is found, the incident waves are imposed as boundary conditions. The splitting permits
the use of convergence acceleration techniques to get the steady-state. Here we use local time-stepping
[4]. We estimate that on the Category 3 problem, the computation of the steady-state is accelerated
by a factor of 30 using local time stepping.

2.4 Boundary Conditions

The use of the Riemann solver at element faces makes the imposition of boundary conditions simple.
Boundary conditions are implemented by specifying the external state as the input for the Riemann
solver [6].

In the two-dimensional problems, it is also necessary to implement radiation boundary conditions. In
this paper, we treat the outgoing pressure waves through a damping-layer procedure, which is easy to
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apply and inexpensive. The damping-layer approach sets the source term on the right of eq. (1) so that
sound waves are damped in time as they propagate toward the outer boundaries. Only the radiating
sound waves are damped, so the damping term is written as

S =
σ

γ − 1




0
0
0

p− pss


 (11)

where pss is the steady-state pressure. The quantity σ is a ramp function that grows smoothly from
zero as the outer boundary is approached. We use two such ramp functions. The first increases the
damping radially as

σ (r) = β
(

r − r0
rmax − r0

)ν

(12)

where r is the radial direction, measured from the center of the airfoil. The rate at which the ramp
function increases, ν was chosen to be either one or two. The second ramp function replaced the radial
direction with the boundary-normal direction within an element along the outer boundary. Using two
different ramp functions and varying r0 and Rmax permitted us to assess any contamination of the
solution by spurious reflected sound waves.

3 Solutions of the Workshop Problems

3.1 Category 1, Problem 1

Fig. 1 shows the distribution of the maximum acoustic pressure inside the nozzle. The solution was
computed with two meshes. The coarse mesh used 16 elements at eighth order in each for a total of
144 collocation points. A fine mesh solution with 300 points is used for comparison. The inlet portion
shows that there is only the transmitted wave, and that the wave amplitude is 5.47 × 10−6. In the
throat section, we find a peak amplitude of 1.03 × 10−4. Finally, the exit section of the nozzle shows
reflected and incident waves. The mean value of the coarse grid solution in the exit portion of the
nozzle, which should be the incident wave amplitude, is within 0.4% of the exact.

At the top of Fig. 1 we show the distribution of the elements. The ability to adjust the element size
according to the resolution needs of the problem is an important feature of the method. It permits the
use of a minimum number of degrees of freedom to solve the problem accurately.

3.2 Category 3, Problem 1

For Category 3, Problem 1, we compute the unsteady aerodynamic and aeroacoustic response of a
single airfoil to a two-dimensional, periodic vortical gust. In this problem, the incident gust propagates
from infinity with the mean flow to the airfoil. At the airfoil surface, sound and vorticity are generated.
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Figure 1: Maximum acoustic pressure amplitude for Category 1, Problem 1. Plotted are coarse and
fine grid solutions. The element boundaries are marked at the top of the figure by vertical bars.

The sound propagates outward in all directions from the airfoil, while the vorticity propagates as a
vortex street off the trailing edge of the airfoil. We solve this problem in the total-field formulation: We
impose the gust as an external boundary condition and compute the time dependent flow as a periodic
steady-state of the full nonlinear Euler equations.

Two important computational issues for this problem are the choice of mesh topology and the size of
the mesh. First, the mean flow must be well-resolved in the neighborhood of the airfoil. Unlike a pure
CFD calculation, however, it is also necessary to have uniform resolution in the far field with which to
represent the incoming gust, the expanding sound wave and the vorticity advected downstream from
the airfoil. These needs indicate that a grid formed by a conformal mapping would not be efficient, since
the conformal grid will produce large elements in the far field. For this reason, we use unstructured
grids. Figs. 2 and 3 show representative examples of meshes used about the airfoils.

The distance of the external boundaries from the airfoil also affects the solution. As in a CFD
calculation, the outer boundary must be far enough away so that the surface pressure is not affected.
An additional constraint is that the velocity in the external regions must be close enough to the uniform
free-stream value so that the assumption of setting the gust at the outer boundary as a plane wave is
accurate. For instance, we find that the mean flow velocity is within 2.5 % of the free-stream velocity
at about 7.5 chord lengths from the non-lifting airfoil. For the lifting case, on the other hand, it is
necessary to extend the mesh to 22.5 chord lengths in each direction to get a solution independent of
the outer mesh distance.

Two independently written DSEM codes were used to compute the solutions presented here. Code 1
uses elements with straight sides except on the airfoil surface. It parameterizes the airfoil by polar
angle θ, which gives better resolution in the neighborhood of the trailing edge. The damping layer in
Code 1 has a ramping function that grows in the element normal direction. Code 2 has the ability to
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Figure 2: Mesh topology for the non-lifting airfoil

Figure 3: Closeup of a mesh in the neighborhood of the airfoil.

use curved element boundaries on all elements, as shown in Fig.3. It parameterizes the airfoil surfaces
by arc length except near the leading edge, where polar angle θ is used. The damping layer in Code 2 is
circular, as described in eq. (12). Both codes permit the use of variable order meshes so that the order
of the approximating polynomials can be adjusted locally to provide the desired resolution. The use of
the two codes permitted the assessment of the effects of the radiation boundary conditions, resolution
along the airfoil surface and element shape.
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Figure 4: Steady surface pressure for the symmetric airfoil as a function of distance along the horizontal,
scaled to the chord length.

3.2.1 Nonlifting Airfoil Solutions

The steady pressure on the surface of the symmetric airfoil is shown in Fig. 4. The grid used for these
calculations extended 7.5 cord lengths from the airfoil. The fixed order computation used 11th order
polynomials in all elements. The variable order computations used polynomials between six and 11,
arranged to approximate a uniform eight points per wavelength of the incident gust. The fixed order
calculation put 95 points along the airfoil surface. For the variable order cases, the Code 1 solution
used 59 points and the Code 2 solution put 55 points along the surface. The computed solutions are
compared to the FLO36 solution used in the workshop overview comparisons. Note particularly that
the DSEM’s have no problem approximating the solution near the sharp trailing edge of the airfoil.

We first show solutions to the nonlifting airfoil for wavenumber k = 3. The acoustic response along
the surface is shown in Fig. 5. We find that the three solutions are consistent with each other except
near the leading edge. There, the peak pressure is sensitive to the resolution. In particular, the three
curves show that the lower the resolution, the lower the peak amplitude.

The computed acoustic intensity is shown in Fig. 6. Shown are the solutions corresponding to the
three solutions in Figs. 4 and 5 plus an additional solution computed on a mesh that extended 11.5
chord lengths in each direction. The damping layer in the larger calculation extended three wavelengths
beyond the others. The directivity patterns indicate that the radiation boundary conditions are not
significantly affecting the solutions. The small difference in the peak values, with variation of 7 % or
less, can be attributed to the difference in the peak values at the leading edge of the airfoil.

The Figures 4-6 show that the solutions, computed with different codes and different meshes give
consistent results. It is interesting to note, however, the different computational costs between using
the variable order and the fixed order meshes. For instance, Code 2 required 6.4 hours on an SGI
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Figure 5: RMS surface pressure for the symmetric airfoil and gust wavenumber k = 3.
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Figure 6: Acoustic intensity at radius eight for the symmetric airfoil and for gust wavenumber k = 3.

Origin 200 to compute both the steady and time dependent parts of the solution using the variable
order mesh. The fixed order solution required 19 hours. The factor of three difference between the
two can be attributed to the factor of three larger time step that could be used by the variable order
approximation. The variable order approximation used lower order approximations in the smaller
elements found in the neighborhood of the airfoil, thus permitting a larger timestep.

Finally, we present results for the k = 1 case. The RMS surface pressure is shown in Fig. 7. The
acoustic intensity at four chord lengths is shown in Fig. 8. In both figures, we show solutions computed
using the requested gust amplitude of ε = 0.02 and an amplitude of ε = 0.002 scaled to the amplitude
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Figure 7: RMS surface pressure for the symmetric airfoil with gust wavenumber k = 1. Solutions shown
for the requested gust amplitude and one tenth the requested amplitude scaled by ten. The reference
solution is shown for comparison.
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Figure 8: Acoustic intensity at radius eight for the symmetric airfoil with gust wavenumber k = 1.
Solutions shown for the requested gust amplitude and one tenth the requested amplitude scaled by 100.
The reference solution is shown for comparison.
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Figure 9: Steady surface pressure for the lifting airfoil as a function of distance along the horizontal,
scaled to the chord length.

of the requested solution. Also included on each figure is the reference solution used in the workshop
overview. There is a significant difference between the reference solution and the solutions computed
here. The fact that the nonlinear computations at the two gust amplitudes match exactly indicates
that the differences are not due to nonlinear effects.

3.2.2 Lifting Airfoil Solutions

Finally, we present solutions to the lifting airfoil case for wavenumber k = 1. Figs. 9-11 show the results
compared to the reference solution. As above, the mean and RMS pressures along the airfoil surface
are in good agreement with the reference solutions. Again, as before, there are significant differences
in the acoustic intensity at a radius of four chord lengths.

4 Conclusions

In this paper, we have used two discontinuous spectral element codes to compute two of the acoustic
workshop benchmark problems. Practical features of the method used are the ability to vary the mesh
size and approximation order to resolve local solution features. The method is compact and robust,
and does not need the addition of artificial damping in the presence of sharp edges.

For Category 1, Problem 1, solutions were obtained by using small elements in the neighborhood of
the throat and larger ones away from the throat. This flexibility permitted an accurate solution with
only 144 collocation points, when compared to a reference solution with 300 points.
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Figure 10: RMS surface pressure for the lifting airfoil with gust wavenumber k = 1.
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Figure 11: Acoustic intensity at radius eight for the lifting airfoil with gust wavenumber k = 1.

Category 3, Problem 1 solutions were computed for k = 3 and k = 1 for the non-lifting airfoil, and for
k = 1 for the lifting case. Solutions using different meshes and damping layers were consistent with
each other, as shown in the k = 3 non-lifting case. Surface quantities were in good agreement with
the reference solutions for both airfoils at k = 1. The intensities at four chord lengths, however, differ
significantly from the reference solution. This difference cannot be accounted for by nonlinear effects.
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Validation of a High-Order Prefactored Compact Scheme on Nonlinear Flows
With Complex Geometries

RAY HIXON and Reda R. Mankbadi
CAA Group, ICOMP

NASA Glenn Research Center
Cleveland, OH 44135

Abstract

Three benchmark problems are solved using a sixth-order prefactored compact scheme (ref. 1)
employing an explicit 10th-order filter (ref. 2) with optimized fourth-order Runge-Kutta time
stepping (ref. 3) . The problems solved are Category 1, Problems 1 and 2; and Category 3, Prob-
lem 1.

In the Category 1 problems, the spatial accuracy of the scheme is tested on a stretched grid, and
the effectiveness of boundary conditions is shown. The solution stability and accuracy near a
shock discontinuity is shown as well. Also, 1-D nonlinear characteristic boundary conditions will
be evaluated.  This work will follow the work in ref. 4.

In the Category 3 problem, a nonlinear Euler solver will be used that solves the equations in gen-
eralized curvilinear coordinates using the chain rule transformation. This work, continuing earlier
work on flat-p late cascades (ref. 5) and Joukowski airfoils (ref. 6), will focus mainly on the effect
of the grid and boundary conditions on the accuracy of the solution. The grids were generated
using a commercially available grid generator, GridPro/az3000 (ref. 7).

1)  Category 1 Problems

In Category 1, the problems are solved using the quasi-1-D Euler equations, given in the con-
served variables as:

(1)

The nozzle is the same for both problems, extending from -10<x<10 with the distribution:

(2)

ρ
ρu

E 
 
 
 
 

t

ρu

ρu
2

p+

u E p+( ) 
 
 
 
 

x

1
A
---

xd
dA

ρu

ρu
2

u E p+( ) 
 
 
 
 

+ + 0=

A x( ) 0.536572 0.198086e
2ln( ) x 0.6⁄( )2–
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1.0 0.661514e
2ln( ) x 0.6⁄( )2–
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

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Boundary conditions are set using characteristics at the infl ow and outfl ow:

(3)

which propagate at the speeds:

(4)

Note that in this formulation, the characteristics are not linearized about the mean fl ow.

1.1) Category 1, Problem 1

The problem to be solved is the upstream propagation of an acoustic wave through a transonic,
nearly choked nozzle fl ow.  The mean fl ow is set as:

(5)

The acoustic wave is set at the downstream boundary as:

(6)

or

L1
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 
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(7)

In this problem, the initial condition is set as the exact solution for isentropic fl ow at each grid
point, with the perturbation starting from the boundary at time = 0. The solution is run through 40
cycles of the perturbation, when the data is taken.

Initially, the problem was run with a uniformly-spaced grid until grid convergence was obtained
in order to determine the necessary spacing at x=0 (the nozzle throat). This was obtained at 3201
equally-spaced points, or a ∆x of 0.00625. The minimum spacing was then set, and the grids were
stretched algebraically to a maximum ∆x of 0.1 and were uniform to the boundary. The stretched-
grid solutions were then compared with the 3201-point solution for accuracy.

Figure 1 compares the solution obtained on the 251 point stretched grid with that of the exact
solution, while Figure 2 shows the grid spacing distribution as a function of x for the various
grids.  The solution on this relatively coarse grid agrees very well with the exact solution.

L2( )outflow 2– ε ω
1 Moutflow–
----------------------------- 

  ω 10
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Figure 1:  Comparison of Maximum Pressure Distribution for 251 point Stretched Grid with
Exact Solution
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1.2) Category 1, Problem 2

The problem to be solved is the upstream propagation of an acoustic wave through a shock wave
in a convergent-divergent nozzle.  The mean fl ow is set as:

(8)

and

(9)

The acoustic wave is set at the upstream boundary as:

ρ
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Figure 2:  Grid Spacing Distribution for Various Numbers of Grid Points
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(10)

or

(11)

In this problem, the initial condition is set as the exact solution for isentropic fl ow at each grid
point, with the perturbation starting from the boundary at time = 0. The solution is run through 40
cycles of the perturbation, when the data is taken.

As before, a uniform grid solution of 3201 points was run as a reference solution. The solution
that is presented has 201 points in the grid. Figure 4 compares the mean pressure with the exact
solution. Figure 5 compares the pressure perturbations between the stretched 201 point grid and
the exact solution. Figure 6 compares the outfl ow pressure history with the exact solutions. Note
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Figure 3:  Comparison of Instantaneous Pressure Perturbation for Category 1 Problem 1
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Figure 4:  Comparison of Mean Pressure Distribution for Category 1 Problem 2

Figure 5:  Comparison of Pressure Perturbation for Category 1 Problem 2
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Figure 7: C-Grid used for Joukowski Airfoil (433 x 125)
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Figure 6:  Comparison of Outfl ow Pressure Perturbation Time History for Category 1 Problem 2
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that, while there are oscillations around the shock, the fi ltering keeps this from contaminating the
solution downstream.

2)  Category 3 Problem 1

2.1) Problem Description

In this set of problems, a two-dimensional simple-harmonic vortical gust convects past a 12%
thick Joukowski airfoil. The gust has the distribution:

(12)

(13)

Here, e = 0.02 and k = 0.1.

ugust ε– M
2

2
------- 

  2k x y Mt–+( )( )cos=
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2

2
------- 

  2k x y Mt–+( )( )cos=

Figure 8: Closeup of Cambered Airfoil Grid
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The mean fl ow at infi nity is defi ned as:

(14)

where M = 0.5 and γ = 1.4.

In the fi rst test, a symmetric airfoil is used at a zero degree angle of attack. The second test used a
cambered airfoil (camber ratio = 0.02) at a two-degree angle of attack.

2.2) Mathematical and Numerical Formulation

In this work, the nonlinear Euler equations are solved. In Cartesian coordinates these equations
are written as:

(15)
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Figure 9: Effect of Trailing Edge Singularity on Instantaneous Pressure Contours (Cambered Airfoil).
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Figure 10:  Mean Pressure Distribution on the Airfoil Surface
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Figure 11:  RMS Pressure Disturbance Distribution on the Airfoil Surface
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where

(16)

(17)

(18)

where

(19)

Since the Joukowski airfoil has a complex geometry that does not lend itself to Cartesian grids,
the equations were recast in generalized curvilinear coordinates. From previous numerical tests
(ref. 8), the chain-rule formulation was chosen as the most accurate form of the equations in three
dimensions. The chain-rule curvilinear Euler equations are written as:

(20)

The time stepping method used was the low storage fourth-order nonlinear extension of Hu’s 5-6
Low Dispersion and Dissipation Runge-Kutta scheme (ref. 9) by Stanescu and Habashi (ref. 3). A
time step of CFL = 1.5 was used for all calculations, giving 911 time steps per cycle of vorticity
for the medium-frequency case and 9110 time steps per cycle of vorticity for the low-frequency
case.

The spatial derivatives are calculated using the prefactored sixth-order compact scheme and
explicit boundary stencils of Hixon (ref. 1). At block boundaries, an 11-point explicit stencil was
used. A 10th order explicit fi lter (ref. 2) was used at every stage of the Runge-Kutta solver to pro-
vide dissipation.
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The grid used was a C-grid topology (Figure 7), extending at least fi ve chord lengths away in each
direction. The grid had 221 points on the airfoil and 106 points along the wake cut. In the normal

direction, 125 points were used. The grid was generated using the commercial package GridPro7.

For the calculation, the grid was split into three blocks: an airfoil block and upper and lower wake
blocks. The grid was clustered algebraically in the normal direction (∆n = .01) and near the trail-
ing edge point (∆x = .01), as shown in Fig. 8. A stretching ratio of 1.05 was used to a far-fi eld
spacing of ∆x = ∆y = 0.106.

2.3) Initial and Boundary Conditions

For both cases the fl ow was initialized to the mean fl ow with the vortical gust superposed:

(21)

At the wall, Hixon’s inviscid curvilinear wall boundary condition (ref. 10) was used, modifi ed to
set the normal momentum to zero at the wall at each Runge-Kutta stage.

ρ x y 0, ,( ) ρ=

u x y 0, ,( ) u ugust x y 0, ,( )+=

v x y 0, ,( ) vgust x y 0, ,( )=

p x y 0, ,( ) p=

Symmetric Cambered

k = 0.1

k = 1.0

Figure 14:  RMS Pressure Disturbance Contours

NASA/CP—2000-209790 129



At the infl ow boundary, the acoustic radiation condition of Tam and Webb (ref. 11) was used on
the outgoing perturbations. For example, the outgoing u-velocity perturbation was defi ned as:

(22)

At the outfl ow boundary, Tam and Webb’s radiation outfl ow condition (ref. 11) was used with no
correction for the outgoing vortical gust.

At the trailing edge point on the airfoil, the C-grid topology defi nes the airfoil geometry incor-
rectly, causing numerical inaccuracy. While an O-grid geometry would defi ne the trailing edge
geometry properly, the C-grid was chosen due to the excessive number of grid points that the O-
grid would require to accurately resolve the sharp trailing edge.

At the trailing edge, an upper and lower wall condition is calculated, and averaged to make the
trailing edge point single-valued. This averaging, and the discontinuity in the boundary condition
on the surface line as it enters the wake, causes a loss of accuracy near the trailing edge. To reduce
the effect on the global solution, points were clustered near the trailing edge as shown in Fig. 8.
Figure 9 shows the effect of the averaging on the pressure contours near the trailing edge of the
cambered airfoil. The effect was much stronger on the cambered lifting airfoil than on the sym-
metric nonlifting airfoil.

2.4) Results

The compact code was run until the lift coeffi cient settled to a simple harmonic state, correspond-
ing to a nondimensional time of 210, requiring 72 hours on a 2-processor SGI Octane. As
expected, the nonlifting airfoil case converged faster; the lifting airfoil case results are still chang-
ing very slightly.

The mean pressures on the airfoil are shown in Figure 10. The effect of the trailing edge condition
is apparent in both fi gures; however, the effect is localized near the trailing edge. In both fi gures,
some oscillations are seen near the peak of the pressure curve; this is due to marginal resolution of
the high gradients in both the fl ow properties and the change in grid spacing in the tangential
direction. However, the effect on the mean solution is minimal. It is seen that the lifting airfoil
peak pressures are consistently overpredicted; this is attributed to the relatively small computa-
tional domain.

Figure 11 shows the RMS pressure disturbance distribution on the airfoil. Again, some oscilla-
tions due to marginal resolution can be seen near the peaks of the pressure disturbance, and the
trailing edge condition has some effect on the solution on the airfoil. However, the code is pre-
dicting the changing pressure distributions due to the two geometries and different frequencies
very well.

Figure 12 shows the amplitude of the RMS pressure perturbation at a distance of four chord
lengths away from the centerpoint of the airfoil. Here the comparison is not as good as on the air-
foil surface; however, the results compare well qualitatively and the magnitudes are in the correct
range.

uoutgoing uBC u– ugust–=
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Figure 13 shows the distribution of the mean pressure throughout the computational domain.
Note the lack of refl ections at the boundaries. Figure 14 shows the RMS pressure perturbation
distribution. In this case, it is seen that the boundary conditions work well for the low-frequency
case, but there are refl ections for the high-frequency case. It is not certain whether the degrada-
tion in dispersion performance near the boundaries due to the one-sided boundary stencils is con-
tributing to these refl ections.

3)  Conclusions

Four benchmark problems of the Third CAA Workshop were solved using a prefactored sixth-
order compact scheme with 10th order fi ltering. These problems tested the accuracy of the code
on stretched, curvilinear grids with nonlinear fl ows. In all cases, the code was robust and con-
verged well. In the one-dimensional problems, the code proved very accurate even in the pres-
ence of unresolved shock waves. In the more realistic Category 3 problem, the solution shows the
correct trends for the different airfoil geometries and vortical frequencies.
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Introduction

Propagation of sound waves through transonic nozzle

(1)

(2)

(3)

where is the density, is the velocity and is the pressure. in (1)-(3) is the nozzle area and is a function
of given by
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Numerical results for problems in Category 1, 2 and 5 are presented. Due to high resolution requirements
of these problems, high-order finite difference schemes are used. Both the spatial and temporal discretizations
have been optimized for obtaining low dissipation and low dispersion errors in computation. In addition,
Perfectly Matched Layers (PML) are used at all non-reflecting boundaries encountered in Categories 2 and 3.
The schemes used in the present work are modified from those for the benchmark problems in the previous
two CAA workshops [1,2]. Further details of the algorithms are referred to [1] and [2].

, which is very small compared to the mean values of the flow. The nozzle flow is modeled by the
one-dimensional Euler equations with variable nozzle area. In the present work, the acoustic wave will be
computed directly by solving the non-linear governing equations, rather than solving the linearized equations.
This makes it harder to compute the acoustic waves. The challenge is whether the small amplitude wave can
still be captured in the computation.

The governing equations are

In this problem, an acoustic wave is introduced at the nozzle exit region and the sound wave that travels
upstream through the transonic nozzle is to be calculated. The amplitude of the incoming sound wave is



The computational domain is . An upstream propagating wave with very small amplitude
is introduced at the nozzle exit region in the form of

(4)

When propagating upstream, part of the wave will be refl ected at the nozzle throat and the other part is
transmitted which travels to the left and leaves the inlet region of the nozzle. The mean values at the exit
region are given,

To solve (1)-(3), boundary conditions are needed at the nozzle inlet and exit. At the inlet, there is a only
left traveling wave and at the exit, there are left traveling incoming wave (given in (4)) and its refl ection by
the nozzle throat, a right traveling wave. The necessary numerical boundary conditions can be obtained in
several ways. One approach is to rewrite the non-linear equations (1)-(3) in characteristics form and add the
incoming wave as source terms [3, 4, 5]. In the present work, we derived the boundary equations based on the
characteristics of the linearized equations of (1)-(3) since the wave amplitude is very small. We note that the
linearization is only applied at the exit and inlet regions where the nozzle area is constant.

let

where an overbar indicates the time-independent mean value. Since now , we linearize equa-
tions (1)-(3) and write in the matrix form,

(5)

The coeffi cient matrix can be easily diagonalized,

(6)

where is the speed of sound and , , are the eigenvalues.
Boundary conditions can now be formulated using (6). At the inlet, let
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where , , are the out-going (traveling to the left) waves. The equations for , , are found by keeping
only the negative eigenvalue in the characteristics form (6), namely . It follows that

(7)

(8)

(9)

Similarly, at the outlet, we decompose the variables as

where , and are the incoming wave as specifi ed in (4) and , and represent the right traveling
out-going wave (refl ection by the nozzle throat). By only keeping positive eigenvalues in the characteristics
equations (6), namely and , we get following equations,

(10)

(11)

(12)

In the present calculation, Euler equations (1)-(3) are applied in . The inlet and exit boundary
conditions, (7)-(9) and (10)-(12), are applied in and respectively, as shown in
Figure 1. The partitioning for these domains is somewhat arbitrary, so long as the nozzle areas are constant
inside the boundary zones.

The spatial discretizations is carries out using a non-uniform grid with and
and a total of 381 grid points. The central differencing scheme used is the same as that of [6]. The time
integration is carried out by the Low Dissipation and Low-Dispersion Runge-Kutta scheme (LDDRK56 [7])
with a time step .

The initial values of the density, velocity and pressure are formed by a simple linear distribution, as shown
in Figure 2 in dashed lines. As time increases, the solution adjusts itself for the given nozzle shape and mean
values at the inlet and exit. The solid line in Figure 2 show the the density, velocity and pressure distribution at

Figure 3 shows a time sequence of the pressure distribution.This is to demonstrate that the transient
responses propagate out of the computational domain very effectively. Figure 4 shows the pressure as a
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function of time at x=-8, 0 and 8 respectively. Clearly, time periodic solution is reached after about .
In the present calculation, the acoustic wave is computed directly from the non-linear equations (1)-(3) and
together with the mean fl ow. It shows that despite the small amplitude of the wave, the scheme can still capture
the wave. After subtracting the mean value, the acoustic wave is found and the wave envelope is shown in
Figure 5.

Shock-Sound Interaction

In this problem, the pressure at the exit is specifi ed such that a shock is formed inside the nozzle. The
mean velocity at the inlet is now given as and the pressure at the exit is ,

The governing equations are the same as that in the previous section, namely (1)-(3). An incoming wave
is given in the inlet in the form of

Numerically, this problem is solved in a similar manner as in the previous one. At the inlet region, we let

and , and are solved using (7)-(9). At the exit region, we let

and , and are solved using (10)-(12).
Time history of pressure variation in is shown in Figure 6 which exhibits in detail the formation of the

shock. The fi nal profi les of density, velocity and pressure are given Figure 7. Clearly, there are oscillations
near the shock. Since a central difference scheme is used in the present calculation, the oscillations near the
shock are not unexpected. Artifi cial dissipation terms have been introduced in the discretized equations. The
magnitude of the artifi cial viscosity used at each grid point is set to be proportional to the maximum variation
of the solution near the point. Again, non-uniform grids are used with and
with a total of points. As a results, the oscillations near the shock are limited to a very narrow region as
shown in Figure 7.

The emphasis of the current calculation is to see whether the small acoustic disturbance can still be accu-
rately computed despite the inaccuracy near the shock. The results are satisfactory. Time periodic solutions
are obtained after around as shown in Figure 8 where pressure as a function of time at
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and are given. The small acoustic wave is again captured directly from the non-linear equations (1)-(3). By
subtracting the numerical solution by its mean value, wave envelop is found and shown in Figure 9. We see
that despite the high spike of the wave near the shock, the transmitted and refl ected sound waves are quite
accurate.

Rotor Noise

In this problem, sound generated by an 8-blade rotor is simulated. Two cases are considered. The fi rst
is an open rotor and the second is a ducted rotor. The rotor is modeled by introducing forcing terms to the
governing equations as specifi ed in the problem,

(13)

where the forcing terms are given as follows,

Here, represents the number of blades. Equation (13) is further reduced to a 2-D problem by factoring out
the dependency of the solution,

and we get, in complex variables,

(14)

where

in which is the Bessel function of order and is the th root of . For the problem specifi ed,
and and .
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Open Rotor

For the open rotor case, the computational domain of is shown in Figure 10. Spatial
derivatives in (14) are discretized by a 7-point optimized central difference scheme (as in the DRP scheme
[5]) using a uniform grid of . The time integration is carried out by the Low-Dissipation and
Low-Dispersion Runge-Kutta scheme (LDDRK56 [7]) with a time step . In addition, a tenth-order
explicit fi lter is applied throughout the computational domain [2,9].

Perfectly Matched Layer (PML) equations are used at non-refl ecting boundaries of the problem shown in
Figure 10. The width of the PML domain is . Inside the PML domain, the pressure is split into two parts
and the following equations are solved:

in which and are the absorption coeffi cients introduced for absorbing the waves that enter the PML
domain. The choice of the absorption coeffi cients follows a “matched” manner [8, 9]. At the right and the left
PML domains in Figure 9, and at the top PML domain, At the corner regions, both coeffi cients
are not zero. Specifi cally, the magnitudes of the absorption coeffi cients vary smoothly inside the PML domain
as follows,

where and are the location of the initial positions of the PML domain and is the width of the PML
domain. In all calculations, .

At the centerline ,

and singular terms in equation (14) are replaced by partial derivative terms using L’Hospital’s Rule, namely,

at .
Pressure contours are shown in Figure 11 (a) and (b) for and respectively. To show that

a time periodic state has been reached, the pressure as function of time at point is shown in Figure
12. We note that although the pressure contours show similar patterns of sound radiation for both cases, the
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intensities are quite different. The second frequency, , has supersonic tip speed and radiation is
stronger.

Ducted Rotor

For the ducted rotor, the computational domain is shown in Figure 13. The discretization process is
identical to the previous case except now an infi nitely thin duct wall is placed at for .

When the rotor is placed inside the duct, very little sound will be radiated because both frequencies are
cut-off. Figure 14 shows the pressure contours at . It shows that the intensity of sound
radiation decreases dramatically after the initial transient state. Pressure history is shown in Figure 15 and no
time periodic solution is found.

Generation and Radiation of Acoustic Waves from a 2-D Shear Layer

In this problem, a point source is placed inside a 2-D jet and acoustic radiation is to be computed. The
governing equations are the linearized Euler equations,

(15)

In the present calculation, the variables are non-dimensionalized by the mean values at the jet centerline,
namely, the speed of sound for the velocity, for density and for the pressure. The parallel mean
velocity profi le is,

(16)

and the mean density is obtained by the Crocco’s relation. Mach number of the jet . The other
parameters are , , and .

The computational domain of is shown in Figure 16. Due to symmetry in the mean fl ow
and the source term, only the solution in the upper half plane is computed. Symmetry condition is applied for

, and and antisymmetry condition is applied for .
As indicated in Figure 16, supersonic and subsonic non-refl ecting boundary conditions are treated differ-

ently. By (16), mean fl ow is supersonic for . At supersonic infl ow, all variables are set to be zero
and at supersonic outfl ow, backward difference is used for all the spatial derivatives in (15). At subsonic
non-refl ecting boundaries, the following PML equations are used [9],
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(17)

where and are the absorption coeffi cients. A more detailed and general formulation for non-uniform
mean fl ow is given in [9]. The width of the PML domain is 2 at the top and left radiation boundaries and 4 at
the right outfl ow boundary for better absorption of the growing instability waves.

A uniform grid is used in with while a non-uniform grid is used in for an increased resolution
inside the shear layer. The grid size in is such that for , for
and for . Again, the spatial derivatives are approximated by the optimized 7-point
central difference scheme (DRP in [6]), time integration by LDDRK56 [7] and a tenth-order explicit fi lter is
applied throughout the computational domain for the elimination of short waves that are not resolved in the
discretization [9].

Instantaneous pressure contours are shown in Figure 17 for the two frequencies specifi ed in the problem,
(St= ) and (St= ), respectively. Since the shear layer is unstable in

the low frequency case, the excitation of the instability wave results in stronger sound radiation. This is also
seen in the instantaneous pressure profi le along (the center of the shear layer), shown in Figure 18,
and along , shown in Figure 19. Indeed, in an earlier calculation where the values of and were
inadvertently interchanged, which results in a larger shear layer thickness, the growth of instability wave was
much smaller and the sound radiation weaker.
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Figure 1. Schematic of computational domain partitions.
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Figure 2. Spatial distribution of density, velocity and pressure at the initial (dashed) and fi nal (solid) stages.

NASA/CP—2000-209790 178



Figure 3. Time history of the pressure distribution showing the propagation of the initial transient varia-
tions.
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Figure 4. Pressure as a function of time at , and respectively.
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Figure 5. Pressure as a function of spanning a period, showing the wave envelope.

Figure 6. Time history of pressure as a function of , showing the formation of shock from the initial
profi le (dashed).
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Figure 7. Final stage of density, velocity and pressure.
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Figure 8. Pressure as a function of time at , and .
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Figure 9. Pressure as a function of at selected time steps spanning a period, showing the wave envelope.
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Figure 10. Computational domain for open rotor, showing the PML domains at non-refl ecting boundaries.
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Figure 11. Pressure contours for (a) , (b) .

Figure 12. Pressure as a function of time at , (a) , (b) .
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(continued next page)

NASA/CP—2000-209790 186



Figure 14. Pressure contours at .

Figure 15. Pressure as a function of time at . . No time periodic solution is found.
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Figure 16. A schematic of computational domain showing the use of PML domains at all the subsonic
non-refl ecting boundaries.

Figure 17. Instantaneous pressure contours for (top) and (bottom).
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Figure 18. Pressure profi le along for (solid) and (dashed).

Figure 19. Mean along for (solid) and (dashed).
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ON COMPUTATIONS OF THIRD CAA WORKSHOP BENCHMARK PROBLEMS
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Abstract

The high order Dispersion-Relation-Preserving (DRP) scheme is used to solve the first two category 1
problems of the third CAA  Benchmark workshop. The perturbation equations about the mean flow are used
as governing equations in solving two problems. Special non-homogeneous inflow and outflow boundary
conditions are derived to generate incoming or outgoing disturbances.  In order to create accurate results and
keep a minimum number of grid points, a non-uniform grid system in which neighboring mesh sizes differ by
a factor of 2 are used. In the area of grid interface, a combination of Tam & Webb DRP and Lele's cell-centered
high order differencing scheme are implemented, not requiring any interpolation.  Large oscillations
typically produced by high order spatial schemes when the stencil extends across  a discontinuity such as a
shock are avoided by introducing three methods, namely shock perturbation relation method (SPRM),
averaged mean flow discontinuity method (AMFDM) and limiter method (LM).The mean flow solutions are
obtained analytically by using one dimensional isentropic flow as well as the shock relations.

1. Introduction

The focus of computational aeroacoustics (CAA) is concentrated on obtaining long term time accurate
numerical solutions to unsteady flow and acoustic problems. There are several different concepts of how to
simulate acoustic problems numerically(refs.1). The main three of which are (1) employing an acoustic wave-
equation approach in combination with a predetermined dedicated acoustic source term, (2) the direct numerical
simulation (DNS) of all vortical scales, or the large eddy simulation (LES) of all essential scales including the
sound generation, and (3) the perturbation approach, in which an averaged (quasi-) steady flow is pre-computed
and any perturbations to it are simulated, using Euler's equations. In this paper, only method 3 is used to solve
the third benchmark problem.

The numerical study of aeroacoustic problems places stringent demands on the choice of a computational
algorithm. For long it has been recognized that numerical schemes with minimal dispersion and dissipation
error are needed, since the acoustic waves are non-dispersive and non-dissipative in their propagations.
Therefore, all the benchmark problems considered here are solved by using Tam & Webb's 7 points DRP
scheme (ref. 2) which is generally only used for uniform grids. In case of non-uniform grid systems in which
the neighboring mesh sizes differ by a factor of 2, a combination of DRP scheme and Lele's cell-centered high
order scheme (ref. 3) are implemented to describe the derivative. The time advancing schemes used here are
classical 4 stage Runge-Kutta schemes.

2. Category 1, Problem 1: Propagation of sound wave through a transonic nozzle

To reduce the complexity of the problem, but maintaining the basic physics, this problem has been modeled
by a one-dimensional acoustic wave transmission problem through a nearly choked nozzle.
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The governing equations, which are non-dimensionized with respect to the  characteristic values in the uniform
region downstream of the throat, read as follows,

(1)

where A describes the cross section along the nozzle with following area distributions

(2)

The computation domain extends from x=-10  to x=10 with the nozzle throat located at x=0, as shown in
Fig.(1)

The perturbation formulation can be obtained by splitting the flow variables into the mean and perturbations,
the given mean flow field , which is steady density, velocity and pressure, respectively. The
perturbation equations about the mean flow then have the following forms,

(3)

In this problem, a single frequency  sound wave with very small amplitude  is
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generated way downstream of the nozzle throat, and  it propagates upstream through the nozzle, as shown in
Fig. (1).  The upstream propagating wave far downstream of the nozzle throat is given as

(4)

Firstly, the steady solution is determined and secondly the perturbation solution is solved.

2.1 Steady flow solution

The physical quantities of the mean flow in the nozzle are connected by the isentropic flow relations as well
as the continuity equation. With area ratio A/Ae and Me known, 

e and Me are area and Mach number
is the area at any given position x in the nozzle. 

(6)

 For Me = 0.4, the steady solutions are shown in Fig.(2). It can be seen that the local Mach number at the
nozzle throat is about 0.94 which is close to sonic. With the known mean solution, the perturbation equation
(3) can now be solved by using high order schemes.

2.2 Radiation and outflow boundary condition

From a physical point of view, the upstream propagating sound wave will partly be reflected from the area of
the transonic nozzle throat and partly transmitted to the upstream of the nozzle throat. In the nozzle throat, the
sound wave amplitude will be amplified. Therefore, to ensure that the computed solutions are of high quality
on the limited computation domain, the farfield boundary condition (BD) has to be imposed on both sides
of the computation domain as shown in Fig.(1).

At the left boundary of the computation domain, radiation boundary conditions which permit the transmitted
acoustic waves to leave the computation domain are to be imposed. These boundary conditions are developed
by using asymptotic solutions of the governing equations,
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(7)

At the right boundary of the computation domain, outflow boundary conditions are applied which allow
incoming sound waves to propagate upstream into computation domain and at the same time permit entropy
waves and reflected acoustic waves to leave the computation domain. Thus by means of the asymptotic
solution, in general the density, velocity, and pressure fluctuation can be written in the form of

(8)

Where G and H are unknown entropy waves and unknown reflected acoustic waves, respectively, and F is given
as Eq.(4). By differentiating Eq.(8) with respect to t and x and eliminating H and G, the following non-
homogeneous  outflow flow BD can be obtained,

(9)
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where is a "turning-on" function which has been added to the right side of Eq (9) in order

to turn on the disturbance gradually. The larger , the smaller is the  DC component in the time history of the
solution.  Equations (7) and (9) of inflow and outflow BD are used to update the solution at the left and
right boundary points of the computation domain.

2.3 Grid systems

In order to  keep adequate approximation to the partial derivative, a minimum of 6 to 8 mesh points per wave
length is required by the DRP scheme. The mean flow in the nozzle is so strongly non-uniform, especially
close to the nozzle throat, that the wavelength of the propagated acoustic waves are strongly varying too. In
general the non-dimensional wavelength can be estimated as . Since the maximum M in the

nozzle throat is 0.94, the sound wave has a minimum wave length of  in that area, where

corresponds to non-dimensional wavelength under zero mean flow and   in the present case.  Due

to the problem description, it is required that no more that 400 mesh points be used.  A uniformly spaced
grid mesh with 400 grid points in the computation domain could only render 4 mesh points per wave length,
which is much less than that required by the DRP scheme. Therefore, a non-uniform grid system in which the
neighboring mesh size differs by a factor of 2 is used, as shown in Fig.(3)

Since the grid size in adjacent areas differs by a factor of 2 as shown in Fig.(3a), it is not difficult to form a 7
points DRP stencil at every point in region A with a mesh size of  and every point in region B using a mesh size of

 except for the first two points from the interface.

For the second point shown in Fig.(3c), a DRP stencil with a grid size of  can be implemented. For the first
point, a Lele cell-centered symmetric stencil (CC), as shown in Fig.( 3b), is used. A 6th-order explicit scheme
based on this stencil can be obtained from an approximation of the form
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(10)

where  and . It should be noted that this concept
can be directly transferred to 2D and 3D, by applying the mid-point differencing of Lele along the grid diago-
nals in 2D and 3D.

The spectrum characteristics of Eq.(10)  and its comparison with the DRP scheme as well as the exact solution are
given in Fig.(4), where  and  are the wave number representation  of the finite difference scheme and of
the partial derivative respectively.

It can be seen that with  up to 1.2 the curve for the CC scheme is nearly the same as the DRP scheme.
After that, the CC scheme shows better resolution characteristics than that of the DRP scheme which drops down
very quickly for high wavenumbers.

To test the numerical dispersion and dissipation properties due to the  non-uniform grid, a one dimension

nozzle with a uniform area distribution of A=1.0 and uniform mean flow is used and

a Gaussian distributed acoustic pressure pulse is seeded into the computation domain at x=0.0 at time t=0.0.
This initial value problem is solved by the 7 points DRP scheme for the uniform grid and by the combination
of DRP and CC schemes for the non-uniform grid. The half width b of the pressure pulse is , which
means that the half width of the pulse is resolved with more than 15 points for the uniform grid. In order to
eliminate the short wavelength spurious numerical waves generated due to the changing of the grid size and
different schemes used in the interface area, Tam’s artificial selective damping (ref. 4) is additionally
introduced. A background damping coefficient of 2 is used in the numerical computation. In the calculations
of the propagation of sound wave through the transonic nozzle,  extra damping coefficients are also added to
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the background damping in the area close to the nozzle throat where strong flow gradients occur. With
inclusion of the artificial selective damping terms, spurious waves are effectively eliminated in the numerical
solutions.

The governing equation has the form of Eq.(3). Computations are based on two different grids, one uniform
grid with 400 grid points and grid size  and one non-uniform grid with only 209 grid points and

the grid size decreasing from  to .

The calculated waveform at two different time instants t=2.0 and t=10.0 are shown in Fig.(5). When released
at time t=0.0 an acoustic pressure pulse is generated and then split into two, the one propagating in the
upstream direction and the other in the downstream direction. At time t=10.0, the downstream propagated signal
has already left the computation domain. The results for both grids show very small dispersion error. Both the
peak value and shape of the waveform on the two grid systems match very well except at t=10.0. At
t=10.0, the magnitude of the peak is almost identical. The difference on the shape of the waveform close to
the peak is purely due to the graphical representation on the large grid spacing used in the non-uniform grid
system.

2.4 Numerical solution for propagation of sound wave through a transonic nozzle

The computation is performed by solving Eq.(3) with the above mentioned hybrid high order schemes and farfield
boundary condition.  Three different types of grid arrangements, one for uniform grids with 400 grid points
and the other two for the non-uniform grids with 209 and 321 grid points, are used. The grid point distribution
is so arranged for the non-uniform grid that the finest grid size is always located around the nozzle throat to
give the best wave resolution. The numerical computations continue for each grid until a time-periodic state is
achieved.
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The effects of the different  on the asymptotic DC component are studied. The non-uniform grid with 209
points is used to carry out a numerical simulation. Fig.(6) shows the time history of the pressure disturbance
at the nozzle throat at  and the effect of different  on the DC-component. With increasing , the
transient DC component drops very sharply from positive to one negative value and then gradually asymptotes
to the zero-axis. Although with large  the DC can be reduced,  long running time is needed until the solution
attains an asymptotic periodic state. This zero-frequency component will remain in the solution since there is
no natural decay of it in a one-dimensional problem. Finally  is selected in the following computations.

Turning back to the non-constant nozzle area case, the pressure distribution for the non-uniform grid with 321
grid points in which  and  are 0.125 and 0.0078125 respectively is given in Fig.(7) at time

t=320. It shows that the transmitted waves travel upstream from the nozzle throat and leave the domain
through the left BD smoothly. Moreover, sound wave interference between upstream propagated wave from
outflow BD and reflected waves from nozzle throat is very obvious. In the nozzle throat, the sound signal has
been accumulated and amplified.

Fig.(8) shows the distribution of the maximum acoustic pressure over a cycle and the strong gradients zoomed
close to the peak area. The comparisons between non-uniform and uniform grid display the effectiveness of
the grid refinements. Even with 209 points on the non-uniform grid, almost half of 400 uniform-grid, one can
still obtain much better results. The grid refinement is necessary close to the transonic nozzle to capture the
physical behavior and this has a pronounced effect on transmitted waves.

3. Category 1,Problem 2: Shock-sound interaction

In this problem, a shock occurs downstream of the nozzle throat in the mean flow solution.The same governing
equations as Eq.(1) are used, with which the problem is simplified as a sound wave passing through a shock
in a quasi-1D supersonic nozzle. All physical quantities used in the governing equations are non-
dimensionalized using the upstream value. The same geometry is used as in problem 1.

Due to the formation of a shock in the nozzle, the change of the perturbation signal is attributed to the induced
motion of the shock wave and its interaction with the disturbances in the flow. These disturbances may be
large so that the mean flow and shock position will change or they are small such as in the case of acoustic

wave or vorticity wave. Since the sound wave used in the present problem has the magnitude of 10-5, the
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problem is solved again by using perturbation formulation. In doing so, there is no feed-back loop between
the mean flow and the perturbation is assumed and the motion of shock is neglected, which is believed to be very 
small due to the small disturbance.

In order to propagate reliable information to the area downstream of the shock, the interaction between the
shock and the disturbance must be accurately predicted. Numerical difficulties in the form of large oscillations
occur using high order spatial schemes such as DRP or CC schemes when the stencil spans a discontinuity
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such as a shock. Three methods, which are named shock perturbation relation method (SPRM), averaging
mean flow discontinuity method (AMFDM) and limiter method (LM) are developed to avoid these problems.

The steady shock flow is solved by using isentropic flow and shock relations. The similar non-uniform grid
system as in problem 1 with the finest grid size in the area of the shock is used in the numerical simulation.

3.1 Steady shock flow solution

Two separated isentropic flow relations, one for the domain extending from inflow face to the pre-shock
position and the other for the flow behind the shock are used and are connected by shock relations. Using
isentropic flow relations and shock relations and assuming total temperature keeping constant across the
shock, one can figure out the equation for the pre-shock mach number M1,

(11)

Where  and  are total pressure of pre- and after shock respectively.

(12)

The subscript t and e here represent taking the value at nozzle throat and uniform region downstream of the
shock.  can be solved by replacing Me and Ae with Mt and At in the Eq.(5) and (6).  is given as
0.6071752. Then the shock position x1can be found by solving the following equation,

(13)

The steady solutions are shown in Fig.(9). The shock position is around x1=0.4.

3.2 Inflow and outflow boundary condition

The same computation domain is chosen as for problem 1 except small sound waves are introduced at the
inflow BD. Therefore, the inflow BD of Eq.(7) has to be modified to include this disturbance,
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Where  and  are the same as problem 1. The outflow BD can be obtained by setting F=0 in Eq.(9).

3.3 Numerical solution on sound-shock interaction

In order to reduce or avoid large oscillation when using high order schemes, three methods are introduced.

(1). Averaging mean flow discontinuity method (AMFDM)

In this method whenever DRP (or other high-order scheme) stencils come across the shock located between
x=s1 and s2 as shown in Fig.(10), the function values at s1 and s2 are averaged. As an example of a DRP-stencil
centered at a pre-shock position, the following approximation for the finite difference scheme at x will be used,

(15)
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Two procedures have to be executed for this method.  DRP differentiation at x is considered.  Firstly, for 
domain bounded by the vertical dashed line, see Fig.(11), two extra-points are linearly inter-
polated between two adjacent grid points using the function value on these two grid points. Secondly,
the generated extra-points are used in the DRP stencil and a limiter is set on it as given in Eq.(16)

(16)

(3). Shock perturbation relation method (SPRM)

By perturbing the shock relation about the mean flow, an explicit linearized relation between the pre-and post-
shock perturbations may be obtained:

(17)

Where indices 1, 2 denote pre- and post-shock state respectively. To implement this method, following
scheme arrangements are used. For the three pre-shock grid points the DRP-backward stencils are used as
shown in Fig.(12). For the two post-shock points downstream of s2 the DRP forward stencils including point

  are used. To update the value at s2, Eq.(17) is used. This method avoids the DRP stencils across the shock.
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Fig. 11 Stencil used for LM method
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In order to implement AMFDM and LM methods, Eq.(3) has been modifi ed, in that the differentials for the mean
fl ow variables and the perturbation variables are separated, as given in Eq.(18). Eq.(3) is used for the
implementation of the SPRM method. A non-uniform grid with 393 grid points is used. Fig.(13) shows the time-
asymptotic distribution of the pressure perturbation at start of a period for above three methods in
comparison with the exact solution. Comparisons show that the effects of different shock treatments on the
results upstream of the nozzle throat are very small since no information will be fed back upstream due to the
supersonic flow.

(18)

The pressure distributions, shown as well in zoom scale near shock show the SPRM method gives the best
representation of the sound wave in general, while LM and AMFDM have some dispersion error. The sound
waves downstream of the shock and in the shock area are very much dependent on the different shock
treatments. The LM method renders a fairly good representation of the amplitude downstream of the shock,
but there is a small phase difference to exact solution. AMFDM method in general underestimates the signal
downstream of the shock.

The instantaneous pressure field at the exit plane through one period as given in Fig.(14) again shows the same
tendency.
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.

Conclusions

(1) In order to produce accurate results and keep a limited number of grid points, a non-uniform grid system
is used to solve problems 1 and 2. The results show the grid refi nements to be effective when a combination
of the DRP and cell-centered high order schemes as well as artifi cial selective damping are used at the grid
interface.

(2) The DRP scheme and proper treatments in the area close to the shock can generate convergent results.

(3) The effects of different treatments on the results are seen in the area downstream of the shock; but little
effects on the results are observed in the area upstream of the shock.

(4) The SPRM method gives the best representation of the sound wave in general.
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SOLUTION OF THIRD COMPUTATIONAL WORKSHOP INTERNAL PROPAGATION
PROBLEMS USING LOW ORDER SCHEMES

JEFFREY HILTON MILES

National Aeronautics and Space Administration

Glenn Research Center at Lewis Field

Cleveland, OH 44135

Abstract

1 Introduction

2 Governing Equations and Numerical Formulation

2.1 Problem 1
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The problems solved are Category 1 Problems 1 and 2. Problem 1 is solved using a MacCormack
scheme. Problem 2 is solved by perturbation of a conservative Euler equation solution to the steady state.
The problems are solved on evenly spaced grids. While solutions were found, the methods selected and not
using stretched grids lead to solutions which do not compare well with those found using more accurate
schemes. However, the perturbation of the mean flow scheme used to solve problem 2 shows promise.

The claim is often made that the computation of aeroacoustic problems requires numerical schemes of high
accuracy, low dispersion, and almost non-dissipation [1, 2]. This paper shows some of the complications that
arise in obtaining a solution for the propagation of sound waves through a transonic nozzle for cases where
the flow is nearly sonic and for cases where the flow has shocks if one ignores these requirements and uses
lower order schemes.

The problems solved are Category 1 Problems 1 and 2. Problem 1 is solved using a MacCormack scheme.
Problem 2 is solved by perturbation of a conservative Euler equation solution to the steady state. The problems
are solved on evenly spaced grids. While solutions were found, the methods selected and not using stretched
grids lead to solutions which do not compare well with those found using more accurate schemes.

h. The second step uses a forward predictor with a backward corrector.fi1fi∂x
∂ f

h and a forward corrector,

L
1fifi∂x

∂ f
2

intervals. The first step involves a backward predictor, L

The solution scheme used to solve the propagation of sound waves through a transonic nozzle problem uses
the conservative nonlinear acoustic formulation Hariharan and Lester [3, 4] and a low order MacCormack
computation scheme. The mean flow was found using analytical gas dynamic equations.

The MacCormack differencing scheme used to generate numerical solutions has two steps applied at ∆t



In addition, no grid stretching was used since use of constant spacing maximized the time step size. A
total of 381 grid points are used. The largest CFL number that could be used for a convergent solution was
CFL 4 10 3. Consequently, for each cycle about 9925 steps were used.

2.2 Problem 2

The solution scheme presented for the Shock-Sound Interaction Problem is based on perturbation of a conser-
vative Euler equation solution. The Euler equation solution is solved using the Steger and Warming (1981) [5]
fl ux vector wave speed splitting technique. Note that while the Steger and Warming (1981) [5] paper discusses
using MacCormack schemes to obtain solutions for the fl ow fi eld, the steady state fl ow fi eld discussed herein
was obtained using procedures described in Chapter 10 Section 3 of Ref. [6] which require a block-tridiagonal
solver. The block-tridiagonal solver used is described in Ref. [7].

In addition, again no grid stretching was used since use of constant spacing maximized the time step size.
A total of 701 grid points are used. The CFL number used in these calculations was unity.

2.3 Shocks

Due to the limited number of points in the nozzle region the steady state solution did not work well with
supersonic fl ow. To make the code more robust in the nozzle region the following scheme was used when the
code has a problem obtaining a solution due to a shock. The code was prompted to use analytical solutions as
follows:

c j 1 γp j 1c2
re f ρ j 1

M j 1 u j 1cre f c j 1

M2
j

M2
j 1

2
γ 1

2γ
γ 1M2

j 1 1

When M2
j 0 then

Tj 1
MW p j 1c2

re f

ρ j 1Rgas

Tj Tj 1
1 γ 1

2 M2
j 1

1 γ 1
2 M2

j

p j p j 1
1 γM2

j 1

1 γM2
j

ρ j ρ j 1
γ 1 M2

j 1

γ 1 M2
j 1 2

c j
γp jc2

re f

ρ j

u j c jM j cre f
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When M2
j 0 use

u j u j 1 if j 2

u j 0 5 u j 1 u j 2 if j 2

p j 0 2ρ∞c2
∞ ρre f c2

re f

ρ j γp j 1 u2
j

2.4 Formulation of Perturbation Scheme

After making sure one can use the mean fl ow program and obtain a mean fl ow solution for ρ̄, ū, and p̄, one
must modify the steady state program to solve the perturbation problem.
The fi rst step in creating the perturbation scheme is to note that one can create the average of density, velocity
and pressure using a recursive method. Y(n) the average of x(n) over n time steps can be calculated from

y n
1

n 1

n

∑
k 0

x k

n 1 y n
n 1

∑
k 0

x k x n ny n 1 x n

y n
n

n 1
y n 1

x n
n 1

The second step is to defi ne the start of a period of a wave with frequency f0 which is advanced in a time step
∆t from t to t ∆t.
Let

θ0 2 π f0 ∆t 1 10 6

θ 2 πt

Then the start of a cycle is defi ned as the time at which cos θ cos θ0 , sin θ 0, and sin θ sin θ0 .
Using this scheme the average over a period for the Nth period of the density, ρ , velocity, u , and
pressure, p can be calculated. Then the acoustic perturbation quantities are defi ned as follows

ρ n ρn ρ N

u n un u N

p n pn p N

For the fi rst period one can use the mean fl ow values
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ρ 1 ρ̄
u 1 ū

p 1 p̄

ρ n ρn ρ̄
u n un ū

p n pn p̄

3 Boundary Conditions

For Problem 2 the boundary conditions for the case studied have two parts. One part is for the steady fl ow
and the second is for the unsteady fl ow. The boundary conditions used for both parts are based on the acoustic
characteristic equations for fl ow in a constant area tube. The governing isentropic differential equations are

∂ ρ
∂ t

∂ ρ u
∂ x

0

ρ
∂ ρ
∂ t

u
∂ u
∂ x

∂ p
∂ x

0

∂ p
∂ t

∂ p u
∂ x

γ 1 p ∂ u
∂ x 0 (1)

The acoustic system equations are derived by decomposing the fl uid variables into a steady fl ow component
and an acoustic perturbation component.

φ φ 0 φ

φ
ρ
u
p

φ 0

ρ0

u0

p0

φ
ρ
u
p

Using this assumption Eq. 1 can be written as

∂ φ
∂ t

M
∂ φ

∂ x
0

where

M
u0 ρ0 0
0 u0

1
ρ0

0 γ p0 u0

Note that γ p0 ρ0 c2
0.
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The matrix differential equation is diagonalized by a similarity transformation using the matrix T such that

λT T 1 M T

where

λT

u0 0 0
0 u0 c0 0
0 0 u0 c0

T
1 1 c2

0 1 c2
0

0 1 ρ0 c0 1 ρ0 c0

0 1 1

T 1
1 0 1 c2

0
0 ρ0c0 2 1 2
0 ρ0c0 2 1 2

Then

∂ W
∂t

λT
∂ W

∂x
0

where

W w1 w2 w3
T T 1 φ

ρ p c2
0

p ρ0 c0u 2
p ρ0 c0u 2

For subsonic fl ow the entropy wave associated with w1 moves with the fl ow at velocity u0, an acoustic wave
associated with w3 move with the fl ow at velocity u0 c0, and another acoustic wave associated with w2 moves
against the fl ow with velocity u0 c0. Consequently, at the inlet where two characteristics enter the duct for
the steady state case two boundary conditions can be set and the third can be extrapolated from interior values.

3.1 Problem 1

The inlet is assumed not to produce refl ections. Consequently, the gradients of the upstream moving charac-
teristic waves are zero. The downstream moving characteristic wave is assumed to be the same at points 1 and
2. The inlet boundary condition for the steady state and perturbed fl ow is then derived from

p3 p2 ρ̄2c̄2 u3 u2 Ta

ρ2 ρ1 p2 p1 c̄2
1 0

p2 p1 ρ̄1c̄1 u2 u1 0
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The solution for ρ1 u1 and p1 is

ρ1 ρ2 Ta 2c̄2
1

u1 u2 Ta 2ρ̄1c̄1

p1 p2 Ta 2

At the exit

θ ω xexit 1 Mexit t

ρexit ε cos θ
uexit ε cos θ
pexit ε cos θ

3.2 Problem 2

For subsonic fl ow the entropy wave associated with w1 moves with the fl ow at velocity u0, an acoustic wave
associated with w3 move with the fl ow at velocity u0 c0, and another acoustic wave associated with w2 moves
against the fl ow with velocity u0 c0. Consequently, at the inlet where two characteristics enter the duct for
the steady state case two boundary conditions can be set and the third can be extrapolated from interior values.
The inlet boundary condition for the steady state and perturbed fl ow is then

ρn 1
1 1 ε sinθ

un 1
1 2 un

2 un
3 ε sinθ

pn 1
1 1 γ ε sinθ

θ ω
x1

1 M1
t

At the exit since two characteristics leave the duct and one enters, one can specify only one boundary condi-
tion. The other two boundary conditions are found by extrapolation from the interior.
Thus for this case where the exit pressure ,pexit , is constant we have

ρn 1
jbc 2 ρn

jmax ρn
jmax 1 ρ n 1

jbc

un 1
jbc 2 un

jmax un
jmax 1 u n 1

jbc

pn 1
jbc pexit p n 1

jbc

Additional comments on boundary conditions for one dimensional fl ow are presented in section 10.4 of Ref.
[6] and in section 16.4.2 thru 16.4.4 in Ref. [8].
The unsteady part is also based on acoustic characteristic equations.
For density and velocity perturbations we use
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ρ n 1
jbc 2 ρ n

jmax ρ n
jmax 1

u n 1
jbc 2 u n

jmax u n
jmax 1

At the exit a non-refl ecting boundary condition is used. Consequently, the wave components propagating in
the negative x direction are zero and we have ∂ w2

∂ x 0.
Consequently,

∂ p
∂ x

ρ0c0
∂u
∂ x

0

p n 1
jbc p n 1

jmax ρ0c0 u n
jbc u n

jmax

Note that these boundary conditions are used in the solution in fl ux vector form

Q1 ρ
Q2 ρ u

Q3 ρ et ρ e u2 2 p γ 1 ρu2 2

In addition, the quantity solved for in the tridiagonal matrix equation is ∆Q Qn 1 Qn.

4 Results

4.1 Problem 1

The steady mean normalized density, ρ̄ ρexit, velocity, ū cexit, and pressure, p̄ pexit are shown in Figs. 1-3
for Category 1 Problem 1. The distribution of maximum acoustic pressure during cycle 2 is shown in Figs. 4
and 5. The ripple found between the nozzle throat and the nozzle exit in solutions by other participants did
not appear.

4.2 Problem 2

The steady mean pressure distribution is shown in Fig. 6 and a close up view of the nozzle region is shown in
Fig. 7. The steady mean Mach number distribution is shown in Fig. 8 and a close up view of the nozzle region
is shown in Fig. 9. While the overall plots of pressure and Mach number shown in Figs. 6 and 8 appear fi ne,
the plots in the nozzle region (Figs 7 and 9) only roughly resembles a good steady state solution.
Calculations were done using a CFL number of 1. For the shock sound interaction problem the pressure
perturbation distribution at the start of cycle 500 is shown in Fig. 5. Comparison with solutions using other
methods show that the solution after the shock is much better than the solution before the shock.
The pressure perturbation at the exit over one cycle starting at the start of cycle 500 is shown in Fig. 6. The
solution for the pressure time history at the exit shows a phase lag of about 320 degrees.
The error at the end of a period for the pressure perturbation distribution at the start of each cycle is shown in
Fig. 7. A stable solution is obtained after cycle 400.

NASA/CP—2000-209790 223



5 Conclusions

The problems solved are Category 1 Problems 1 and 2. Problem 1 is solved using a MacCormack scheme.
Problem 2 is solved by perturbation of a conservative Euler equation solution to the steady state. The problems
are solved on evenly spaced grids. While solutions were found, the methods selected and not using stretched
grids lead to solutions which do not compare well with those found using more accurate schemes and stretched
grids. The perturbation of the mean fl ow scheme used to solve problem 2 shows promise. Investigations should
be undertaken on how to improve accuracy by use of grid stretching and use of more sophisticated methods
of solving the mean fl ow.
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exitc2 Figure 4.—Distribution of maximum acoustic pressure during
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Figure 5.—Distribution of maximum acoustic pressure during
cycle 2 for Category 1 Problem 1 (–2 < x < 2).

Figure 6.—Steady mean pressure distribution for Category 1
Problem 2 (–10 < x < 10).
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Figure 7.—Steady mean pressure distribution for Category 1
Problem 2 (–2 < x < 2).

Figure 8.—Steady mean Mach number distribution for 
Category 1 Problem 2 (–10 < x < 10).

Figure 9.—Steady mean Mach number distribution for 
Category 1 Problem 2 (–2 < x < 2).

Figure 12.—Error at end of period verses period for
Category 1 Problem 2.

Figure 10.—Pressure perturbation distribution at start of cycle
500,       =     – <     > for Category 1 Problem 2p í pi pi

Figure 11.—Pressure perturbation at the exit over one cycle,
       =          – <         > for Category 1 Problem 2p éxit pexit pexit
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ADAPTIVE NONLINEAR ARTIFICIAL DISSIPATION MODEL FOR CAA

JAE WOOK KIM and Duck Joo Lee
Korea Advanced Institute of Science and Technology

Taejon, Korea

1. Introduction

Several kinds of artificial dissipation models were developed so far for the purpose of obtaining
numerical stability and efficient convergence features of numerical schemes based on the central
differences [1-7]. These present good resolution characteristics near discontinuity of nonlinear waves but
have a tendency to damp out the amplitude of linear waves seriously, because these were originally
designed to suppress the low wavenumber components of a wave profile. Therefore these are not suited
for the time-accurate numerical solutions of aeroacoustic problems that contain linear waves of very small
amplitudes in the far field. Jameson [1], Pulliam [2] and others [3-5] applied the nonlinear artificial
dissipation model to the steady Euler computations, which was a blend of the second-order and fourth-
order derivative term with the nonlinear switching coefficients. It has excellent shock-capturing properties
and helps fast convergence to the steady state, but it leads to the unnecessary damping of the linear waves
because it cannot distinguish the small-amplitude linear waves from the spurious numerical oscillations.
The artificial selective damping model was introduced by Tam et al. [6, 7] to solve the nonlinear acoustic
problems using the dispersion-relation-preserving scheme [8] which is a high-order and high-resolution
solver based on the central differences. The artificial selective damping model has been used for time-
dependent CAA solutions and not for the convergence to a steady-state solution. It was designed to damp
out the spurious wave components effectively in the high wavenumber range unresolved by the finite
difference scheme, while at the same time keeping the wave components in a wide band of the low
wavenumber range unaffected. It is good for linear waves without unnecessary damping, however it lacks
the shock-capturing properties to resolve the nonlinear discontinuity and is not able to remove the
spurious oscillations completely around the nonlinear waves.

In this paper, an improved formulation of artificial dissipation model is derived for CAA, which
removes the spurious numerical oscillations produced by the nonlinear waves sufficiently but does not
have an effect on the linear waves. The artificial selective damping model and the nonlinear artificial
dissipation model are combined for the numerical stability and temporal accuracy of CAA performed by
the high-order and high-resolution central difference schemes. The artificial selective damping model is
reformulated into a conservative form to maintain the correct phase speeds of nonlinear waves. The
second-order derivative term in the nonlinear artificial dissipation model is combined with the artificial
selective damping model to improve the shock-capturing property progressively. Quasi-one-dimensional
formalism is presented in the generalized coordinates for Problem 1 and 2 in Category 1 of the Third CAA
Workshop on Benchmark Problems. An adaptive constant is devised to control the local magnitude of the
dissipation level automatically and need not be readjusted for a variety of problems. The compressible
Euler equations in the conservative form are solved for the present computations. The optimized fourth-
order compact schemes based on the central differences [9, 10] are used for evaluation of the spatial
derivatives and the classical fourth-order Runge-Kutta method is used for temporal integration of the flow
variables. The feasibility and performance of the adaptive nonlinear artificial dissipation model are
investigated for CAA in the present paper.
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2. Governing Equations

The entire conservation forms of quasi-one-dimensional Euler equations are used for the governing
equations of Problems 1 and 2 in Category 1. The equations are fully nonlinear ones, which are somewhat
different from the equations of non-conservation form provided by the Workshop Committee. The words
‘conservation form’ mean all the spatial variables including transformation metrics and Jacobian are
contained in the differential operator. The equations are expressed in Cartesian coordinate as

0H
EQ =−

∂
∂+

∂
∂

x
A

t
A )()(

(2-1)

where Q is the vector of conservative variables, E is the vector of inviscid fluxes and H is the source vector.
A = A(x) is the cross-sectional area. The vectors and their components of the conservative variables and the
inviscid fluxes are expressed as

[ ] ( )[ ]T

t
T

t upepuueu ++== ρρρρρρ ,,,,, 2EQ

where the total internal energy et is defined as
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1
1

u
p

e t +
−

=
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.

Actually, the equation (2-1) should be transformed to those in the generalized coordinate for obtaining
efficient solutions on variable grid meshes. The equations in the generalized coordinate are expressed as

0H
EQ =−

∂
∂+

∂
∂ ˆ)ˆ()ˆ(

ξ
A

t
A . (2-2)

The superscript ‘∧ ’ denotes the functions in the generalized coordinates system. These vectors are given as

[ ]Txx p
d
dA

JJJ
0,,0ˆ,ˆ,ˆ

ξ
ξξ === H

E
E

Q
Q

where J is the transformation Jacobian and xξ  is the transformation metric from the Cartesian to the

generalized coordinates. In the one-dimensional case, J is identical with xξ .

3. High-Order and High-Resolution Schemes and Boundary Conditions

Recently, the need of accurate and efficient numerical algorithms with high truncation order and high
resolution has been increased for CAA in that these are able to simulate the generation and propagation of
high-wavenumber (or high-frequency) and small-amplitude wave components directly. These are almost
non-dissipative and less dispersive than the standard low-order ones that have been used widely so far.
For the present work, the optimized fourth-order compact schemes are used for the evaluation of spatial
derivatives and the classical fourth-order Runge-Kutta scheme is used for the integration in time. To be
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compatible with the high-order and high-resolution schemes, the characteristic boundary conditions are
implemented as physically correct and time-dependent numerical boundary conditions for CAA.

Optimized Compact Finite Difference Scheme at Interior Nodes
The main scheme presented here is the pentadiagonal type of central compact scheme to be used on

interior nodes and it is the generalization of the Padé scheme of the seven-point stencil as shown below:

ξ∆ξ∆ξ∆
βααβ

642
332211

2112
−+−+−+

++−−

−
+

−
+

−
=′+′+′+′+′ iiiiii

iiiii

ff
c

ff
b

ff
afffff (3-1)

where fi is a objective function, f i is its spatial derivative at node i and a, b, c, α and β are the coefficients of
compact discretization with an order of truncation. This is the central difference formation for the
evaluation of the first derivatives on the interior nodes. The relations to determine the truncation order of
this scheme are derived by using Taylor’s series expansion of Eq. (3-1). Only the tenth-order scheme has
unique values of the coefficients, and these are of the highest order obtainable with Eq. (3-1). The other
lower order schemes should have free coefficients that are not determined completely until more
constraints are imposed, and these can be used to improve the resolution characteristics. Analytic and
systematic constraints for the determination of the free coefficients are considered. The nature of these
constraints is minimization of the dispersive (phase) errors in the wavenumber domain by the Fourier
analysis. Using these constraints, the authors succeeded in optimizing the central compact schemes and
showed that the optimized fourth-order pentadiagonal scheme is the most accurate among the standard
central schemes and non-optimized compact schemes [9, 10]. The coefficients were obtained as follows:

a = 1.279672797796143, b = 1.051191982414920, c = 0.04475268855213291,
α = 0.5900108167074074, β = 0.09779791767419070.

Optimized Compact Finite Difference Scheme near and at Boundary Nodes
Equation (3-1) can be solved by inversion of pentadiagonal matrix and the matrix should be closed at

the boundaries. Therefore some different formulations were considered near and at the boundaries. The
non-central or one-sided compact schemes to be used on near-boundary and boundary nodes are
expressed as

• i = 0  :  ∑
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0
,244,233,2211,200,2
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jj fafffff

ξ∆
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Equations (3-2)-(3-4) were derived to close the pentadiagonal matrix at the boundaries and the optimum
coefficients were so determined that the schemes became the fourth-order ones except on the boundary
nodes (i = 0) for numerical stability. These formulations are, of necessity, non-central or one-sided
differences and their error characteristics are both dispersive and dissipative. The two kinds of errors can
be analyzed simultaneously in the wavenumber domain by the Fourier analysis and the authors
minimized these errors with the analytic optimization method too [9, 10]. The relations to determine the
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truncation orders of these schemes are derived by using Taylor’s series expansion of Eq. (3-2)-(3-4). The
optimum coefficients were obtained as follows:

• i = 0  :  Second Order  :
a0,0 = -2.95516745786296, a0,1 = -1.63175038219495, a0,2 = 4.28093227034817, a0,3 = 0.305985569709741,
α0,1 = 4.57321732196853, β0,2 = 2.27485354566209.

• i = 1  :  Fourth Order  :
a1,0 = -0.643755519081585, a1,1 = -0.215562412498565, a1,2 = 1.39308006947385, a1,3 = -0.47778109295963,
a1,4 = -0.055981044934069,
α1,0 = 0.204356208611126, α1,2 = 0.046406522760991, β1,3 = -0.337432463538152.

• i = 2  :  Fourth Order  :
a2,0 = -0.147618978190642, a2,1 = -0.659846174346428, a2,2 = -0.182251818640843, a2,3 = 0.686060397630997,
a2,4 = 0.29761855559004, a2,5 = 0.00603801795687542,
β2,0 = 0.0402516485629226, α2,1 = 0.449236223001478, α2,3 = 0.659998776315685, β2,4 = 0.10500904552933.

The optimum coefficients provide high accuracy and maximum resolutions for the central, non-central and
one-sided compact schemes, and these schemes were proposed as the optimized high-order compact
(OHOC) schemes. And these are used to evaluate the spatial derivatives accurately in the whole
computational domain for the present work.

Characteristic Boundary Conditions
The boundary conditions to be used for CAA in this paper are based on the local one-dimensional

characteristics. The characteristic variables are analyzed by transforming the governing equations to the
characteristic wave convection equations. The local one-dimensional relations between the characteristic
convection terms and the primitive variables are generated from the wave convection equations. The
physical boundary conditions are imposed to the characteristic convection terms using the local one-
dimensional relations. No extrapolations are needed in the implementation of the present boundary
conditions. Full nonlinear Euler equations in their entire conservation forms are directly solved at the
boundary without linearization or simplifications. The non-reflecting inflow/outflow conditions are used
for the steady mean solutions, and the transparent source conditions are employed to simulate the acoustic
disturbances at the inlet or outlet boundaries.

4. Adaptive Nonlinear Artificial Dissipation Model

The classical artificial dissipation consists of the second-order and fourth-order derivative term in
conservative form. The former is for a shock-capturing feature and the latter is for a background smoothing
effect. But the effect of the background smoothing term is so excessive that it may damp out the linear
acoustic waves seriously and it is not proper for CAA. On the other hand, the artificial selective damping
model lacks a stability to capture a high discontinuity generated from a strong nonlinear wave and still
produces numerical oscillations near the discontinuity. It was proposed in a non-conservative form so it
may have some error in reproducing the phase speeds of nonlinear waves if it is used in the original form.
In this paper, a revised formulation of the artificial selective damping term in conservative form is
presented. Then, it is desirable to combine the shock-capturing term and the artificial selective damping
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term as the background smoothing term. In this paper, this combination is proposed as an adaptive
nonlinear artificial dissipation (ANAD) model.

Quasi-one-dimensional formalism of an ANAD model is suggested in the generalized coordinates.
Consider the dissipation term added on the right hand side of the quasi-one-dimensional Euler equations
in the flux vector form at the i-th grid point as:
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ii

A
t

A
DH
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(4-1)

where the vectors of the conservative variables, the inviscid fluxes and the source term are represented in

section 2. The dissipation term iD̂  is given by the flux differences of the midpoint values as
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Then the numerical dissipation flux vector in the generalized coordinates is given in this paper as
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where the differencing coefficients of the background smoothing term are obtained by constructing the
conservative form of the artificial selective damping term, which is also the flux differencing form of the
midpoint values. The resulting coefficients are as follows:

b1 = -b0 = -0.1624382574577463, b2 = -b-1 = 0.07309131357825455, b3 = -b-2 = -0.01447042896399915.

The cross-section area on the midpoint in Eq. (4-2) and the transformation Jacobian on the midpoint in Eq.
(4-3) are evaluated just by the arithmetic averages of their values on the adjacent two grid points as
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The stencil eigenvalue and the absolute eigenvalue are defined as

( ) ( )
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3

2

3

2

stencil minmax
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,
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ixii
cu ξλ += .

The nonlinear dissipation functions in Eq. (4-3) determine magnitudes of the second-order dissipation and
the fourth-order dissipation according to the change of pressure gradient. In regions of strong
discontinuity, the second-order dissipation, i.e. the shock-capturing term dominates and the fourth-order
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one is turned off. Out of the region, the second-order one becomes a very small value and the fourth-order
one, i.e. the background smoothing term, governs the dissipation. The nonlinear dissipation functions are
suggested in this thesis as

( )mimi +−=+ = νκε
3

2

)2()2( max
2
1

,
( )[ ])2()4()4(

2
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2
1 ,0max ++ −= ii εκε ,

where the shock detector, νi is given as
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The adaptive control constants in the generalized coordinates are devised in this paper as
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where the meanings of the superscripts, ‘max’ and ‘min’ are explained by the following relations:
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The adaptive control constants expressed in Eq. (4-4) are newly suggested in this paper for effective
applications of the artificial dissipation model to various CAA problems in the one-dimensional
generalized coordinates, which can be used for the linear and nonlinear waves at once. At each time step,
the optimal values of the control constants are calculated automatically by the flow properties. One need
not readjust the constants according to case-by-case nor waste additional computation time to find an
optimal value of them.

5. Application to Benchmark Problems

In this section, the numerical algorithms and ANAD (adaptive nonlinear artificial dissipation) model
presented in this thesis are applied to actual computations of Problems 1 and 2 of Category 1 in the Third
CAA Workshop on Benchmark Problems, and their accuracy and performance are investigated. It is shown
that the ANAD model enables the central difference schemes to simulate the propagation of sound waves
and shock-sound interactions in the transonic nozzle successfully.
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Problem 1 of Category 1
The numbers of grid points used are 301 and the grids are clustered near the nozzle throat. The time

step used is determined by CFL condition with a Courant number of 0.9. The convergence criterion for the
steady state is that the maximum value of the residual defined as |ρ(n+1)-ρ(n)|/ρ(n) is below 1×10-15 which is
the order of machine error. The computation time to obtain the steady mean solutions is 92.6 second in
25,000 operations using an IBM PC with an Intel Celeron Processor of 400 MHz. After the steady state is
reached, the acoustic perturbation starts at the exit plane, and the periodic oscillatory state with constant
magnitudes is achieved after 25 wavelets are produced. The error residual history for steady mean
solutions is represented in Fig. 1.

The steady mean solutions are represented in Fig. 2, where it is shown that the numerical solutions are
in good agreement with the analytic solutions. The perturbation distributions ( )()( xx ρρ − , )()( xpxp − ,

)()( xuxu − ) at an instant are expressed in Fig. 3, where the interference between incident and reflected
waves at the upstream region, the shock-sound interaction at the throat, and the transmitted waves at the
downstream region are shown well. The distribution of maximum pressure perturbation in one period is
represented in Fig. 4.

Fig. 1. Error residual history for steady mean solutions: Problem 1 of Category 1.
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Fig. 2. Steady mean solutions compared with analytic solutions: Problem 1 of Category 1.

Fig. 3. Distribution of pressure perturbations at the start of a period: Problem 1 of Category 1.
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Fig. 4. Distribution of maximum pressure perturbation in one period: Problem 1 of Category 1.

Problem 2 of Category 1
The number of grid points used is 251 and the grids are clustered near the nozzle throat. The CFL

condition for time step and the convergence criterion for the steady state are the same as for Problem 1. The
computation time to obtain the steady mean solutions is 46.1 second in 16,000 operations using an IBM PC
with an Intel Celeron Processor of 400 MHz. After the steady state is reached, the acoustic perturbation
starts at the inlet plane, and the periodic oscillatory state with constant magnitudes is achieved after 25
wavelets are produced. The error residual history for steady mean solutions is represented in Fig. 5.

Fig. 5. Error residual history for steady mean solutions: Problem 2 of Category 1.
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The steady mean solutions are represented in Fig. 6, where it is shown that the numerical solutions are in
good agreement with the analytic solutions. The perturbation distributions ( )()( xx ρρ − , )()( xpxp − ,

)()( xuxu − ) at an instant are expressed in Fig. 7, where the interference between incident and reflected
waves at the upstream region, the shock-sound interaction at the throat, and the transmitted waves at the
downstream region are shown well. The exit pressure signal through one period is represented in Fig. 8.
The results in Fig. 7 and 8 are also in good agreement with the analytic solutions that are provided by the
committee of the Third CAA Workshop on Benchmark Problems.

Fig. 6. Steady mean solutions compared with analytic solutions: Problem 2 of Category 1.

Fig. 7. Distribution of pressure perturbations at the start of a period: Problem 2 of Category 1.
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Fig. 8. Exit pressure perturbation signal through one period: Problem 2 of Category 1.
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Abstract

The optimized upwind DRP scheme (refs. 1 and 2) and the method of space-time CE/SE (ref. 3) are used to
solve two of the workshop benchmark problems, problems 1 and 2 of category 1. For problem1 of category
1, both uniform and non-uniform grids are considered. A nearly converged solution is achieved with 400
uniform grid points for the upwind DRP scheme and with 1600 uniform grid points for the CE/SE method.
The use of the non-uniform grid points significantly reduces the number of grid points needed for obtaining
accurate numerical solutions. The pressure fluctuation increases drastically around the throat of the nozzle.
The fluctuation is accurately predicted by the upwind DRP scheme. For problem 2 of category 1, a
converged solution is achieved with 200 uniform grid points for both numerical methods. The steady flow
variables for both problems are calculated using the CE/SE method. The calculated steady flow solutions
agree with the analytical solutions very well.

Introduction

Aeroacoustic problems are governed by the same equations as those in aerodynamics, namely the Navier-
Stokes equations. Aeroacoustic problems, however, have their own nature, characteristics and objectives,
which are distinctly different from those commonly encountered in aerodynamics (ref. 4). During the past
years, many numerical schemes have been developed and applied for computational aeroacoustics. For the
current investigation, two of the numerical schemes, the optimized upwind DRP scheme (refs. 1 and 2) and
the CE/SE method (ref. 3), are used to solve problems 1 and 2 of category 1 for the 3rd CAA benchmark
problems.

The optimized upwind DRP scheme was developed for computational aeroacoustics. The scheme is high
order accurate, uses fewer grid points per wavelength compared with that of standard high order accurate
schemes from the Taylor series expansion, and automatically damps out spurious short waves. The upwind
DRP scheme used here is the 7-stencil DRP upwind difference approximation with optimized coefficients.
The scheme is a fourth-order scheme. For instance, the first order derivative
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where the coefficients ja  (ref. 1) are:
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The coefficients above are used for calculations in the interior computational domain. For the boundaries,
the coefficients (ref. 5) are:
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It is noted that 
60
ja represents standard six order accurate one-side scheme and was obtained solely from the

Taylor series expansion. The reason for choosing 
60
ja from the Taylor series expansion is that optimization

did not make visible improvement for this case. In addition, it is worthwhile to mention that 
5115

jj aa −−=  and
6006

jj aa −−= . The temporal discretization used in the scheme is from Tam and Webb (ref. 6).

The CE/SE method was developed for solving general fluid dynamics problems (ref. 3). The conservation
equations are solved in integral forms with flux conservation in space and time. Space and time are unified
and treated on the same footing. The CE/SE method used in the current study is a second-order scheme.

The objectives of the current investigations are to evaluate the accuracy of the two schemes for the
benchmark problems and to compare the solutions from the two numerical schemes.

Mathematical Formulations

It is known that the computation of sound wave propagation through a transonic nozzle and the simulation
of the shock-sound interactions are challenging problems for computational aeroacoustics (CAA). In order
to study the reliability and the accuracy of the current numerical methods for the CAA, simplified model
problems are formulated and solved using the upwind DRP and the CE/SE methods. The first problem is a
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one-dimensional acoustic wave transmission problem through a nearly choked nozzle; and the second
problem is described as a sound wave passing through a shock in a quasi-one-dimensional supersonic
nozzle. For both problems, the area of the nozzle is given by:
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The governing equations for both problems are the quasi-one-dimensional Euler equations. The
dimensionless form of the equations is given as follows:
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For problem 1, the inlet and outlet boundary conditions used in the computations are radiation boundary
conditions. At the inflow boundary,

At the outflow boundary,

where 510−=ε , πω 6.0= and 4.0=M . For problem 2, the radiation boundary condition and the outflow
boundary condition are used for the inlet and the outlet, respectively. At the inlet,
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At the outlet,

where 510−=ε , πω 6.0= and 2006533.0=M . The computational domain is considered as 1010 ≤≤− x .

Results and Discussions

The solutions of the two problems of category 1 are presented. In the first problem, both uniform grid and
non-uniform grid are considered. All the variables are non-dimensionalized with the characteristic values in
the uniform region downstream of the nozzle throat. In the second problem, only uniform grid is considered.
All the variables are non-dimensionalized using the upstream values such as the inlet nozzle height, the inlet
gas density, and the inlet speed of sound, etc. The steady state solutions for both problems are solved using
the CE/SE method.

Category 1 Problem 1

The acoustic waves, with angular frequency πω 6.0= , are generated downstream of the nozzle and
propagate upstream through the narrow passage of the nozzle throat. Figure 1 shows the pressure
perturbation along the nozzle at time 40=t using the upwind DRP scheme with uniform grid. The numbers
of the grid points used in Figure 1 are 200, 400 and 800, respectively. We can see that a converged solution
is achieved with 400 uniform grid points. The maximum acoustic pressure distribution is shown in Figure 2
for the same numbers of the uniform grid points. However, after enlarging the region around the peak
pressure fluctuation of Figure 2, it is shown in Figure 3 that a non-uniform grid is needed to achieve a more
accurate solution if no more than 400 mesh points are allowed. The non-uniform grid points used in Figure
3 were obtained from the following transformation
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where 5=A , 6.1=β and 11 ≤≤− ξ . The pressure perturbation along the nozzle at time 40=t  is shown in
Figure 4 for the CE/SE method with 200, 400 and 800 uniform grid points. It is shown in Figure 4 that a
converged solution is not achieved yet. As the number of the uniform grid points increases to 1600, a nearly
converged solution, shown in Figure 5, is obtained by the CE/SE method. Again if non-uniform grid points
are used, a converged solution can be obtained by fewer than 400 grid points. The steady flow solutions are
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calculated by the CE/SE method. Figure 6 shows the numerical solutions agree with the analytical solutions
very well.

Category 1 Problem 2

The small amplitude acoustic waves, with angular frequency πω 6.0= , are generated upstream at the nozzle
inlet and propagate downstream through a shock in a quasi-one-dimensional supersonic nozzle. The
pressure perturbations along the nozzle are shown in Figures 7 and 8 for the upwind DRP and the CE/SE
schemes, respectively. It is seen that a converged solution is obtained for both schemes with 400 uniform
grid points.  The comparisons of the solutions from the two schemes are given in Figures 9, 10 and 11 for
pressure, density, and velocity perturbations. We can see that there are some discrepancies between the
results from the two schemes, particularly after the shock. Since the same density and pressure perturbations
are expected, the wiggles in the density perturbations from the upwind DRP scheme, shown in Figure 10,
are the result of numerical errors. The pressure, density, and velocity perturbations from the upwind DRP
scheme are shown in Figure 12. It is seen that the pressure and density perturbations are identical before the
shock but different after the shock. However, there are no wiggles in the density perturbations from the
CE/SE method (Figure 13). One possible reason for this is that the CE/SE method is based on the
conservative formulation whereas the upwind DRP is not. If the conservative formulation were used for the
upwind DRP scheme, the wiggles in the density perturbation would disappear. Pressure perturbations at the
exit through a period of time are given in Figure 14 for both the numerical schemes with 400 uniform grid
points. The numerical steady flow solutions are compared with the analytical solutions in Figure 15. The
agreement between the numerical solutions and the analytical solutions is excellent.

Results of the two benchmark problems suggest that for the first problem the fourth-order upwind DRP
scheme needs fewer grid points than the second-order CE/SE method if uniform grid points are used. This
result is expected since the upwind DRP scheme used has a higher order of accuracy. However, for the
problem involving a shock-sound interaction (the second problem), the CE/SE method gives more accurate
results due to the conservative formulation.

Conclusions

In the paper, the two problems of category 1 have been solved using two numerical schemes, the upwind
DRP scheme and the CE/SE method. The results show that both methods give accurate numerical solutions
for both benchmark problems. For the first problem if the same grid point distribution is used the advantage
of the higher order scheme is that it requires fewer grid points for achieving an accurate solution. However
when there is a shock wave in the flow field, the conservative formulation becomes crucial for the accuracy
of numerical solutions.
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Figure 2. Maximum pressure perturbation
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Figure 7. Pressure perturbation at t=40

-10 -5 0 5 10
x

-3E-05

-2E-05

-1E-05

0

1E-05

p’

200
400
800

CE/SE, P2
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Figure 11. Velocity perturbation at t=40
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Figure 9. Pressure perturbation at t=40
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Figure 10. Density perturbation at t=40
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velocity perturbations
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Figure 14. Pressure perturbation at the exit
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Figure 13. Density, pressure and
velocity perturbations
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ESSENTIALLY NON-OSCILLATORY METHODS FOR SHOCK-SOUND INTERACTION

Yong Seok Kim* and Duck Joo Lee**
Department of Aerospace Engineering

Korea Advanced Institute of Science and Technology
Taejon, Korea

SUMMARY

High-order modified flux type Essentially Non-Oscillatory (ENO) schemes are used to solve the
Shock-Sound interaction problem of Category 1. The shock-capturing capability inherent to the
ENO scheme eliminates the oscillations near shock effectively. The peculiar characteristic of the
ENO scheme is the adaptive stenciling, however, this free adaptation of stencils is not necessary in
regions where the solution is smooth. This drawback is remedied by biasing stencils toward those
that are linearly stable. Nonreflecting numerical boundary conditions are employed at the inflow
and outflow for both the steady-state solution and time-dependent solution.

INTRODUCTION

As the computer is developed rapidly, the fluid and the acoustic fields can be solved directly by
using CAA (computational Aeroacoustics) technique. A class of uniformly high-order accurate,
essentially nonoscillatory (ENO) schemes have been developed by Harten and Oshcer [1], Harten
et al. [2]. An attempt to apply the ENO schemes to aeroacoustic problems was made by Meadow,
Caughy, and Casper [3], who discussed spurious entropy waves in calculations of unsteady shock
in the flow field. J.Y. Yang [4] implemented the Lagrangian ENO interpolation of the third-order
accuracy. Ko and Lee [5] improved the fourth-order modified flux approach ENO scheme of high-
resolution and high-order. The ENO schemes used in this paper not only produce sharp shock
profiles but also resolve the small amplitude waves.

At the radiation fields, Thomson's [6-7] non-reflecting characteristic-based boundary condition
was used as the physical boundary conditions so that no propagating waves reflect back inward
contaminating the acoustic field. Thompson decomposed hyperbolic equations into wave modes
of definite velocity and then specified characteristic boundary conditions for incoming waves.

The starting point of his analysis was nonlinear Euler equations. The idea of his approach was
that one-dimensional characteristic analysis could be performed by consideration of the
transverse terms as constant source term. The amplitudes of outward propagating waves are
defined entirely from the variables inside computational domain, while those of inward
propagating waves are specified as the characteristic boundary conditions.

* Graduate Student
** Professor
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NUMERICAL METHOD

The ENO scheme used in this work is briefly described as follows [8]. Consider the one-
dimensional Euler equations of inviscid gas dynamics in conservation law form:

0=∂+∂ FQ xt                                                (1)
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Eq. (1) can be expressed in quasilinear form as:
0)( =∂+∂ QQAQ xt                                                            (3)

where A is the Jacobian matrix QF ∂∂  and has real eigenvalues:
),,(),,( 321 cucuuaaa −+=                                 (4)

where ργpc =  is the sound speed. One can transform Eq. (3) to a diagonal form using the
1−=Λ RAR  and QRW 1−=  relations:
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Eq. (1), based on Roe's approximate method,  can be written as
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In light of the Godunov-type method this reflects different ways of resolving the Riemann
problem at the cell interface and Roe's approach is an ingenious way of extending the linear wave
decomposition, which is the exact linear solution to Riemann's problem, to nonlinear equations.
Here for the first order upwind scheme, the components of the column vector n

j 2/1+Φ  are given by:
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where 2/1+jR  is the right eigenvector matrix and 2/1+j
lwδ  is the element of the characteristic vector

as defined by:
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The cell interface values are obtained by Roe's average. A higher-order ENO scheme for Eq. (1)
can be expressed in the form of Eq. (7) in terms of the numerical flux:
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The components of n
j 2/1+Φ  are defined as:
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where the characteristic speed, l
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of third-order:
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ENO schemes are uniformly high-order accurate right up to the shock. However, they also have
certain drawbacks. One problem is with the freely adaptive stencil. This free adaptation of stencils
is not necessary in regions where the solution is smooth. For the present work, this drawback is
remedied by biasing stencils toward those that are linearly stable. Casper and Meadows [9] have
suggested a nonlinear biasing algorithm that retain the linearly stable stencils in smooth region,
yet allow more freedom near a discontinuity.

RESULTS AND DISCUSSIONS

The high-order ENO schemes discussed above are now applied to the solution of the shock-sound
interaction problem in a quasi-one-dimensional converging-diverging nozzle. The conservative
forms of the quasi-one-dimensional Euler equations are represented as follows:
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The variables tepu ,,,ρ  and A are the density, velocity, pressure, total energy, and nozzle area,

respectively. And p is related to other variables by [ ]2)()1( 22 vuep t +−−= ρργ  where γ  is the
ratio of specific heats.

The area of the nozzle and its derivative are illustrated in Fig. 1. A steady-state solution
(Fig. 2) is obtained from a third-order ENO scheme with a biased stencil algorithm when the
residuals are driven to 1110−  order. It should be noted that this numerically converged initial
condition cannot be obtained with a freely adaptive stencil algorithm. Fig. 3 illustrates the
residual of the steady-state solution. A suitably converged solution demonstrates that the biased
stencil algorithm is well applied.

After steady state is achieved, an acoustic disturbance is introduced at the inlet, x=-10:  At
the inlet boundary, the conditions are:
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where 2006533.0,6.0,100.1 5 ==×= −
inletMπωε . The pressure will be set at the outflow

boundary to create a shock 6071752.0)( =exitp . The calculation is performed on 251 cells clustered
near the nozzle throat. The time step used is determined by a CFL condition with a Courant
number of 0.9. The inflow is perturbed for 500 ≤< λTt , where ωπλ /2=T  is one period of the
incoming acoustic wave. Fig. 4 shows the perturbation at the start of a period

))()(),()(),()(,( xpxpxuxuxxx −−− ρρ  over the period of the perturbation. The acoustic wave
propagates to the shock and where a reflected wave and a transmitted wave are formed. It is
observed that a large amplitude is generated at the shock position due to the interaction between
the acoustic wave and the shock wave. The pressure perturbation at the exit plane over one
period ))()(,( tptpt −  is shown in Fig. 5.
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Figure 1: Throat Pressure History from the Third Order Algorithm

Figure 2: Throat Pressure History from the Seventh Order Algorithm
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Figure 3: Instantaneous Pressure Disturbance for the Third Order Algorithm

Figure 4: Instantaneous Pressure Disturbance for the Seventh Order Algorithm
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Figure 5: Maximum Acoustic Pressure Distribution for the Third Order Algorithm

Figure 6: Pressure Distribution Detail for the Seventh Order Algorithm
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SPECTRAL METHODS FOR COMPUTATIONAL AEROACOUSTICS

DAN STANESCU
CFD Laboratory, Concordia University, Montreal, Canada
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and
W. G. Habashi
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Introduction

Category 1, Problem 1

For the category 1 problems, the nonlinear Euler equations are solved in the form

(1)
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This paper presents an application of spectral methods to computational aeroacoustics problems.
The physics of sound propagation is modeled by the system of partial differential equations that
describe conservation of mass, momentum and energy in inviscid flows. The equations are solved
numerically in the time domain as an initial and boundary value problem to obtain the time-
dependent acoustic pressure in the flow field, from which sound pressure levels are obtained by
integration.

Both global spectral methods and multidomain spectral methods are used to discretize the space
terms that appear in the governing equations. While global spectral methods have some advantages,
such as ease of coding, use of fast Fourier transforms for computing derivatives and high accuracy,
the multidomain methods offer a viable alternative for domains with nontrivial geometric shapes.
They are handled by the use of unstructured grids of non-overlapping hexahedra that may have
curved boundaries. An isoparametric mapping is used to transform each hexahedron on the master
element, on which an efficient collocation spectral approximation can be defined by the use of
tensor products. Continuity of the solution in space is enforced as part of the solution process by
the use of a set of staggered grids that do not involve the element corners.

For time advancement, a set of Runge-Kutta methods optimized for wave propagation and with
minimal storage requirements are used for integration in time. Very simple yet effective radiation
boundary conditions are constructed by adding directional damping terms to the governing equa-
tions in regions near far-field boundaries, but without splitting the equations. As such, the cost at
which these boundary conditions can be implemented is very small. Furthermore, a method for
numerically capturing discontinuities is introduced, that allowed us not only to compute spectral
solutions for flows with shock waves, but also to simulate sound wave propagation through such
discontinuities.



with the state vector , the fl ux vector and the source term given by

(2)

For a usual spectral collocation method based on Chebyshev polynomials, the state vector
as well as the fl ux derivatives and the source terms are computed at the Gauss-Lobatto points

, with the number of modes retained in the approximation. This would

cluster the points quadratically towards the ends of the interval and would only allow a time step

. To alleviate this restriction on the time step, we used the Kosloff-Tal-Ezer [1] mapping,

(3)

such that the position of the corresponding images depends on the parameter , with the two
limit cases being , which corresponds to equi-distant nodes as for Fourier methods, and

, in which case will be the same Lobatto points. Differentiation using the Chebyshev
polynomials in will correspond to the use of a non-polynomial basis in . The mapping intro-
duces an error, which can be made of the order of machine accuracy by setting

(4)

which is the value that we actually used for these computations, and still results in a useful mapping
for suffi ciently high values of . To further cluster points in the central region of interest, the
collocation points in the coordinate are obtained through a mapping of the form

(5)

where the parameter controls the slope of the mapping, and its departure from nonlinearity
( =0.01 and have been used for the results). With these mappings computed, derivatives
are computed in -space using a Fast Cosine Transform method to evaluate the Chebyshev coeffi -
cients [2], and the derivatives in are afterwards evaluated using the chain rule for differentiation.

The Euler equations become after discretization of the fl ux derivative a system of ordinary
differential equations of the form

(6)

and is advanced in time with a low-storage, nonlinear, low dissipation and dispersion Runge-Kutta
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(7)

with for the algorithm to be self-starting. Here we denote , and
. It is found out that this discretization is however unstable due to nonlinear effects,

for which reason we had to use an exponential fi lter of the form

(8)

with the order of the fi lter, a cut-off frequency, and in order to preserve
accuracy. This fi lter is applied directly to the Chebyshev coeffi cients of the state vector only at

the end of a time step. We must note here that the fi ltered state vector does not any

more satisfy the discrete equations, i.e. its residual is not of the order of ; however, the discrete
residual change after the application of the fi lter is very small (of the order of for =128, and
diminishing with ) such that we did not experience any problem in computing the propagation
of the acoustic signal.

For boundary conditions at the infl ow and outfl ow boundaries, we used a simple Riemann
solution between the state as computed from the interior discretization and an external state, which
is defi ned by the problem specifi cation. For computation of the mean fl ow this external state is
constant in time; after saving the steady-state solution, it is allowed to vary in time such as to
specify the incoming acoustic wave. Since the Riemann solver properly accounts for the correct
propagation of waves in unidimensional fl ows, no other special treatment is required. Figure 1(a)
shows the solution obtained for the maximum acoustic pressure along the nozzle using =256
modes.

The main disadvantages of a global spectral method, in particular its lack of geometrical fl ex-
ibility, can be overcome by the use of multidomain spectral discretizations, in which the spectral
expansion is accomplished individually on each subdomain in a non-overlapping decomposi-
tion of the computational domain . The subdomains are then patched together to ensure
continuity of the solution across their interfaces. For the present work, we chose the multidomain
method fi rst introduced by Kopriva and Kolias [4], extended to aeroacoustic problems in [5]. Since
the method is extensively described in these references, we only note here that we used a number
of 9 subdomains, with =25 on each subdomain, giving a total of 225 discretization points. No
fi ltering of the solution is necessary in this case; the steady state solution was converged to ma-
chine accuracy. The subdomains have been clustered in the region of area variation for a better
resolution of the amplitude of the acoustic signal, as can be seen in fi gure 1(b).

Category 1, Problem 2

Shock capturing has long been considered a diffi cult problem for spectral methods, in particular
because of the lack of complete understanding of the Gibbs phenomenon. Lately however, a large
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the spectral expansion of a discontinuous function to fi nd the position and the strength of the
discontinuities and to build a spectrally accurate approximation [6], [7]. For the purpose of this
work, we took a different approach and implemented the so-called spectral viscosity method, fi rst
introduced by Tadmor [9] and used for Chebyshev discretizations in [8].

In this case, the governing equations are modifi ed by the addition of a numerical viscosity
taking the form:

(9)

where the coeffi cient , is the Chebyshev weight function, and
the exponents and are two parameters (taken as and in our computations).
The viscosity term involves the convolution of the viscosity kernel with the fi rst derivative of ;
for convenience, the convolution is actually evaluated in spectral space. The particularity of the
viscosity kernel is that it acts only on the high frequencies of the spectrum of , so that it does not
affect regions where the variables are smooth. Explicitly, the computation of the right-hand side
means evaluating

(10)

where are the Chebyshev coeffi cients of . We used a scalar model for the viscosity, based

on the actual time-dependent variable in each of the three equations, and chose for the kernel the
form:

(11)

with the lowest mode at which the viscosity begins to operate. In fi gures 2, 3, 4, we present
results for a mesh made of 16 subdomains with Gauss points each (hence a total of 288
discretization points), the mesh being somewhat clustered in the shock region as can be seen from
the data points in the fi gures (the smallest subdomain has a length ).

Category 5 Problems

For this problem, the acoustic solver presented in reference [5] has been used. We solve the full
nonlinear Euler equations, and account for the known mean fl ow by subtracting the mean-fl ow
fl uxes from the full instantaneous fl uxes, such that the actual time-dependent variable is the pertur-
bation itself. For the discretization to be consistent with the staggered-grid multidomain spectral
method, however, the mean-fl ow fl uxes must be computed and stored direction by direction; com-
plete details are given in [10]. The main issues for this computation are a good resolution of the
shear layer, and the free fi eld boundary conditions. As the Riemann solver we use is unidimen-
sional, it does not correctly represent the vorticity waves generated in the shear region, so that we
found it necessary to use the damping layer technique described in [5], based on adding a temporal
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damping term to each equation of the form
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(12)

where we take advantage of the fact that the mean fl ow is known beforehand. The damping varies
according to a power law in the damping layer,

(13)

with and the coordinates of the interior and exterior limits of the layer. We emphasize
that, because the equations are not split, the extra cost introduced by the evaluation of the damping
terms is minimal.

For the computations, we used a grid made of 672 subdomains, covering the region
, with 11 layers of elements between and for a better resolution

of the shear layer. The number of Gauss points in each element was varied between and
, which leads to a total number of discretization points approximately between 16,000 and

54,000. Since, due to the nature of the discretization, the points are not equidistant, data along the
respective line segments were extracted using the computational fi eld postprocessor (hence linear
interpolation). The perturbation has been introduced by adding the corresponding source term to
the energy equation. A non-dimensional amplitude of has been used for the source, which
might introduce some nonlinearity into the solution, but we did not have the time to repeat the
experiment for a smaller source amplitude. Based on the maximum number the time step
size was on the coarsest grid, and the solution has been advanced at least up to .
Computational times for the problem on different grids varied from approximately three hours on
one CPU to about fi ve hours on four CPU’s for an Origin2000 machine with 195MHz R10000
processors. However, the results did not vary signifi cantly over the stated range of grid sizes.

As a fi nal comment, we remark that we expect the damping layer (its limits are set at the
outfl ow from to and at the upper boundary from to ) to perform
much better for the higher frequency case, since the sound will travel more wavelengths in this case
within this region. The computational results actually confi rm this expectation. Recent work [11]
indicates that this kind of damping layer is best used in conjunction with grid stretching and low-
pass fi ltering, but we did not explore this issue here. Results obtained for the two cases,
and , in this category, are given in fi gures 5- 8. Insuffi cient resolution in the shear layer
may be the cause for the unexpected variation of the pressure perturbation at higher frequency
( ) at displayed in fi gure 8.
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Fig. 1: Acoustic pressure amplitude along the nozzle for problem 1, category 1 (a) global spectral discretiza-
tion (b) mutidomain spectral.
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NUMERICAL SOLUTIONS TO THE THIRD CAA WORKSHOP
BENCHMARK PROBLEMS

Roy H. Loh and WEN H. LIN
The Boeing Company

Rocketdyne Propulsion & Power
Canoga Park, CA

ABSTRACT

This paper presents numerical solutions to Problems 1 and 2 of Categories 1 and 6 of the 3rd NASA

CAA Workshop on benchmark problems. The numerical algorithm is based on a dual time scheme

for temporal discretization and a third-order finite volume scheme for spatial discretization. The aims

of this study are to apply a dual time stepping scheme to treat aeroacoustic problems of sound

propagation and to validate our CAA solver with the benchmark problems for developing a numerical

tool for noise analysis and control.

1. INTRODUCTION

Flow-generated sound accompanies the operations of almost every device in our daily life. Accurate

determination of sound pressure level is vital for us to understand the physics of noise generation,

control, and reduction in relation to designing a quiet device, machinery, or vehicle. Currently, an

analytic solution to a problem of flow-generated sound is formidable, if not impossible, because the

governing equations, boundary conditions, and initial conditions are so complicated. In most cases,

experimental or numerical schemes are used to obtain the desired sound pressure level for a flow-

induced noise problem. In this paper we employed a finite-volume method for spacial discretization

and a dual-time stepping scheme for temporal discretization to treat acoustic wave propagation in an

arbitrary flow field. The aim of this study is to demonstrate the applicability and accuracy of the

proposed method in solving an “aeroacoustic” problem in a transient flow environment. The ultimate

goal of the study is to develop and validate the proposed numerical tool to compute aeroacoustic

signals for engineering analysis.

In the following the mathematical equations and numerical algorithm are briefly discussed. Then the

computed results of the mentioned benchmark problems are presented.
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2. GOVERNING EQUATIONS

Acoustic wave motion in a flow field is considered a small perturbation to the flow. The total field of

the reference flow and acoustic perturbations satisfies the equations of continuity, momentum,

energy, and state. For a viscous compressible fluid the two-dimensional governing equations written

in a flux vector form with a pre-condition matrix are

0=
∂
∂

+
∂
∂

+
∂

∂
+

∂
∂

ηξτ
GE

t

QQ
D cp

p ,      (1)

where  Qp  = {p, u, v, h}, Qc  = {ρ, ρu, ρv, ρe}, Dp is a pre-condition matrix, τ and t are respectively

pseudo and real time, p, u, v, and h are pressure, velocity components, and enthalpy, ρ and e are

density and internal energy,  E and G are fluxes.

Consider the total field is a time-stationary process such that every field variable can be written as the

sum of a mean part and a purely fluctuating part [1]:
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where i = 1, 2, 3, and F is any variable in Qp and Qc. Applying this concept to Equation (1), one has

the governing equations for the fluctuating variables as

0
''''

=
∂
∂+

∂
∂+

∂
∂

+
∂

∂
ηξτ
GE

t

QQ
D cp

p   (3)

It is noted that the pre-condition matrix Dp in the above equation is evaluated with the mean-flow

state.

At the (n+1)th physical-time and (s+1)th iterative-time levels, we write the above equations in a semi-

discrete form with a temporal accuracy parameter θ  ( 10 ≤≤ θ ) as
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where transformation matrices A and B are defined as
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Equation (5) is the two-dimensional dual time stepping equation used to design the numerical

algorithm in modular forms in a Boeing-Rocketdyne CFD solver named TIDAL (Time Iterative

Density-based Algorithm) to compute the acoustic quantities. Details of the acoustic algorithm of

TIDAL can be found in Reference [2] and therefore omitted in this study.

3. NUMERICAL RESULTS AND DISCUSSION

Using TIDAL, we solved the following four benchmark problems of the third NASA Computational

Aeroacoustics (CAA) Workshop: Problems 1 and 2 of Category 1 for sound wave propagating in a

one-dimensional nozzle and Problems 1 and 2 of Category 6 for sound radiation due to boundary
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layer flows passing a cavity. All these examples were selected to study the functionality, accuracy,

and performance of the acoustic solver of TIDAL in solving the problems of sound propagation.

Results of the study are briefly presented in the following paragraphs.

3.1 PROBLEM 1 OF CATEGORY 1

Figure 1 shows the distributions of mean flow density, Mach number, and pressure. The computed

Mach number is 0.938 at the throat, which is very close to the analytical value of 0.940 [3]. The mean

flow is nearly sonic at the throat. These results were obtained using a uniform grid of 1000 points for

a domain of size 20 (i. e., -10 ≤≤ x 10). If a uniform grid of 400 points is used, the computed Mach

number is 0.928 at the throat. In all calculations for Category 1 problems both grids were used. Figure

2 shows the variations of acoustic pressures with respect to the number of grid points. It is noted from

this figure that at least 300 grid points are needed to resolve the right magnitude and phase of the

sound wave. However, the result obtained by the 1000-point grid has higher values at the throat and

in the upstream of throat than that obtained by 400-point grid. This phenomenon is mainly caused by

the spatial resolution associated with the third-order finite volume scheme.

Figure 3 shows the variations of acoustic pressures with time. The upstream propagating sound wave

has a speed of 0.6 in the constant area downstream of the throat and a varied speed in the convergent-

divergent area. At the throat the wave only travels at a speed of .0721738 because the flow speed is

0.9278262 there. Therefore, at t = 10 the wave front only travels six units from downstream and for t

greater than 20 it already passes the throat. Since the wave can not travel much upstream of the throat,

most of its energy is blocked and accumulated near the throat. A shock-like wave front of maximum

pressure is therefore formed just downstream of the throat, and this maximum oscillates continuously

with time.

Figures 4a and 4b respectively show the time series and Fourier spectra of the maximum sound

pressure. The amplitude of the maximum pressure is 7.76719x10
-5

 obtained by the 1000-point grid

and 4.58071x10
-5

 by a 400-point grid. All these values are smaller than the analytical value predicted

by Tam [3]. Again, the under-prediction of peak value is caused by the spatial resolution limited by

the third-order finite volume scheme. Fourier spectra show that the main frequency is 0.3, which is

the same as the frequency of input wave. In figure 4b there is a harmonic of very small amplitude

(6.72744x10
-6

, 1.05585x10
-6

) at the frequency of 0.9, which is three times the fundamental frequency.
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This harmonic is due to the nonlinear effect of sound wave propagation in a flowing fluid because the

acoustic solver of TIDAL includes nonlinear terms.

Figure 5 shows the envelope of the maximum acoustic pressure distribution inside the nozzle. There

are five complete waves downstream of the throat and only 3.75 waves upstream of the throat. The

non-dimensional wavenumber of the sound wave is 0.6 in the constant area downstream of the throat,

roughly equal to π in the varying area, and equal to 3π/4 in the constant area upstream of the throat.

The small amplitude (7.10818x10
-7

 ) of the wave, obtained by the 400-point grid, in the upstream of

the throat is 7.10818% of the input wave amplitude. Because the mean flow speed at the throat is not

exactly sonic, the sound wave still has energy to propagate upstream.

3.2 PROBLEM 2 OF CATEGORY 1

Figure 6 shows the density, velocity, and pressure of the mean flow. As seen from this figure, a

normal shock is formed just downstream of the throat. In the constant areas up- and down- stream of

the throat the flow properties are all constant.

Figure 7 shows the acoustic density, velocity, and pressure at the start of a period. All acoustic

quantities are amplified by the shock; the perturbed density and pressure are all in phase everywhere

in the nozzle, while the perturbed velocity is only in phase with the density and pressure after the

shock. Before the shock the acoustic velocity lags behind the acoustic density and pressure. The input

sound wave propagates from left to right, reflects from, and travels through the shock. The

transmitted wave continues traveling downstream of the shock and exits the nozzle; however, the

reflected wave interacts with the input wave and causes amplification and cancellation.

Figure 8 shows the envelope of the maximum acoustic pressure distribution in the nozzle for t = 40.

The maximum pressure amplitude behind the shock is constant and equal to the amplitude of the

input wave. However, the maximum pressure before the shock oscillates with respect to the

amplitude of the input wave. At the shock the amplitude of the maximum pressure is approximately

3.47999 times that of the input wave. A comparison is shown in Figure 9 of the computed acoustic

pressure and the corresponding exact solution [4]. Except for the phase and peak value at the shock,

the computed result agrees quite well with the exact solution.

Figure 10 shows the time series of acoustic pressures at the exit plane and at one plane in the constant

area upstream of the throat. This figure shows that both sound waves in front of and behind the shock

are harmonic with the same frequency as the input sound wave.
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3.3 PROBLEM 1 OF CATEGORY 6

Figure 11 shows the time series and Fourier spectra of sound pressures at the center of the left wall at

the center of the cavity mouth, and at one point 3D above the opening, where D is the dimension of

the intrusive plate at the opening. This figure indicates that pressure fluctuations at these three

locations are harmonics and that the pressure fluctuations at the left wall are out of phase with respect

to those at the mouth and outside. Most of the pressure fluctuations at the cavity mouth do not radiate

into the cavity or outside as sound waves. Carefully examining the figure indicates that there are 12

waves associated with the pressure fluctuations at each location in 0.008 second. Therefore, the

dominant frequency of these waves is 1500 Hz.

The most distinct modes are at 125, 750, 1500, 2250, 3000, 3750, and 4500 Hz, and the maximum

sound pressure level is at 1500 Hz for all three locations. The sound pressure level at 1500 Hz is

117.33 dB at the left wall center, 123.34 dB at the point 3D above the cavity mouth, and 133.63 dB at

the center of the mouth, where the sound pressure level in dB is referenced to 20 µPa. The sound

pressure levels of other modes in the frequency range of 100 to 6000 Hz are all above 55 dB.

3.4 PROBLEM 2 OF CATEGORY 6

The differences between this and previous problems are the incoming flow speed and the boundary

layer thickness over the cavity. Figure 12 shows the time series and Fourier spectra of sound

pressures at the center of the left wall, at the center of the cavity mouth, and at a point 3D above the

opening. Again, carefully examining this figure indicates that the pressure fluctuations at the mouth

center and the point outside are in phase and those at the left wall are not quite in phase with the

former two. There are about 15 waves associated with these pressure fluctuations within .006 second;

therefore, the dominant frequency of these waves is 2500 Hz.

The most distinct modes are at 1500, 1800, 2500, 3500, 4350, 5000, 5700, 6350, 6800, and 8000 Hz

and the maximum sound pressure level is at 2500 Hz for all three locations. The sound pressure level

at 2500 Hz is 116.29 dB at the left wall center, 125.79 dB at the point 3D above the cavity mouth, and

140 dB at the center of mouth. The sound pressure levels of other modes in the frequency range of 0

to 10000 Hz are all above 75 dB. The energy level of the sound wave at the mouth center is much

greater in this problem than in the first problem where the incoming velocity was 26.8 m/s. However,
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the maximum radiated sound levels at the left wall of the cavity are very close to each other for both

U = 26.8 and 50.9 m/s.
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GENERATION AND RADIATION OF ACOUSTIC WAVES
FROM A 2-D SHEAR LAYER

Anurag Agarwal†and PHILIP J. MORRIS‡

Department of Aerospace Engineering
The Pennsylvania State University

University Park, PA 16802

Introduction

A parallel numerical simulation of the radiation of sound from an acoustic source inside a 2-D jet is presented
in this paper. This basic benchmark problem is used as a test case for scattering problems that are presently
being solved by using the Impedance Mismatch Method (IMM) [1, 2, 3]. In this technique, a solid body in the
domain is represented by setting the acoustic impedance of each medium, encountered by a wave, to a different
value. This impedance discrepancy results in reflected and scattered waves with appropriate amplitudes. The
great advantage of the use of this method is that no modifications to a simple Cartesian grid need to be made
for complicated geometry bodies. Thus, high order finite difference schemes may be applied simply to all
parts of the domain. In the IMM, the total perturbation field is split into incident and scattered fields. The
incident pressure is assumed to be known and the equivalent sources for the scattered field are associated with
the presence of the scattering body (through the impedance mismatch) and the propagation of the incident
field through a non-uniform flow. An earlier version of the technique could only handle uniform flow in the
vicinity of the source and at the outflow boundary. Scattering problems in non-uniform mean flow are of
great practical importance (for example, scattering from a high lift device in a non-uniform mean flow or the
effects of a fuselage boundary layer). The solution to this benchmark problem, which has an acoustic wave
propagating through a non-uniform mean flow, serves as a test case for the extensions of the IMM technique.

Governing Equations

The Governing Equations are the linearized Euler equations. These equations are solved using the Impedance
Mismatch Method. The linearized Euler equations can be rearranged in the following form

Work funded under NASA Grant NAG-1-1924
†Graduate research assistant
‡Boeing/ A.D. Welliver Professor of Aerospace Engineering
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where S is a source term. The mean quantities, U and ρ are functions of y only (in the present problem) and
the static pressure P is a constant (except inside a scattering body). It should be noted that, in the IMM, the
density inside the scattering body is set to a lower value than the ambient density. The speeds of sound in the
two media are assumed to be equal. This non-physical treatment recovers the physical solution in the ambient
medium. The details of the methodology, including the rationale for choice of body impedance is given in
[1, 2, 3].

The total perturbation flow-field, q, is split into incident and scattered fields.

q qi qs (2)

Then, equation (1) can be written compactly as

∂ql

∂t

∂Ez
l

∂x

∂Fz
l

∂y
∂ql

∂t
Rz

l S (3)

with l being either i for incident or s for scattered, z being either n for non-uniform field or u for uniform field.
E and F are flux vectors in the x and y directions. R represents the residual. The incident field is assumed to
propagate in a uniform flow. Therefore, the governing equation for the incident field is

∂qi

∂t
Ru

i S (4)

From equations (3 - 4), the equation for the scattered field becomes

∂qs

∂t
Rn

s Ru
i Rn

i (5)

The right hand side of this equation acts as a source for the scattered field, it is non-zero inside a scattering
body and in a region of non-uniform mean flow.

Numerical Algorithm

A fourth-order Dispersion-Relation-Preserving (DRP) scheme with a seven point stencil developed by Tam
and Webb [5] is used for spatial discretization and a fourth-order Runge-Kutta scheme is used for time inte-
gration. The time integration method is applied to both the incident and the scattered fields. The integration
of the incident field is performed after the first and third stages of the scattered field integration. To damp out
spurious high frequency waves, a sixth-order artificial dissipation term is used.

The spatial domain and its decomposition for parallel implementation is shown in figure (1). A symmetry
boundary condition is applied at the lower boundary for both the incident and scattered fields. Buffer zones [6]
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Figure 1: A schematic representation of boundary conditions and domain decomposition

are employed at the other boundaries for the scattered field and Tam and Webb [5] uniform radiation boundary
conditions are used for the incident field. In the buffer zone, the perturbation quantities are gradually reduced
to zero by directly multiplying them with an appropriate damping function.

The parallel implementation is based on a technique developed by Lockard and Morris [4]. The code is
written in Fortran 90 and uses the Message Passing Interface (MPI) for communication between processors.
The message passing boundaries are shown by dotted lines in figure (1). Since the spatial stencil for the finite-
difference approximations uses seven points, a three-point overlap region is constructed along the interface of
each sub-domain.

Numerical Results

The physical domain extends from 5 to 50 in the x direction and from 0 to 10 in the y direction. The actual
domain used, including the buffer zones spans from 20 to 65 in the x direction and from 0 to 15 in the y
direction. A uniform grid of 401 451 grid points is used. This grid is used for both the incident and the
scattered fields.
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Figure 2: Perturbation pressure, p along y 1 for S 0 14 and 0 6
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Figure 4: Perturbation pressure contour plot for S 0 6 at the start of a cycle

Figure (2) shows plots of perturbation pressure along y 1 for the two Strouhal numbers. It illus-
trates that for S 0 14, an instability wave is excited, whereas S 0 6 corresponds to a neutral stability
case. Separate analytical computations show that the eigenvalue (wave number k) for the instability wave is
0 6149 0 06724i. This is in exact agreement with the growth rate and wavelength obtained in the numerical
computation. In the higher Strouhal number case, the pressure at y 1 shows the interference between the
acoustic perturbations and the nearly neutral instability wave.

Figure (3) shows the mean square pressure along the outer boundary at y 10 for the Strouhal number
of 0 14 and 0 6 respectively. The average is taken over 10 cycles for the lower Strouhal number and over 40
cycles for the higher Strouhal number. The exponential growth for S 0 14 is as expected. However, since
S 0 6 corresponds to a weak neutral stability case, the acoustic waves contaminate the result for the domain
of interest. As a result a constant amplitude is not seen (as one might expect for a neutral stability case) for
the higher Strouhal number. Figure (4), that shows contours of equal instantaneous pressure perturbation,
illustrates this point. In the vicinity of the source the cylindrical wave pattern, distorted by the mean flow
convection, dominates the solution. Further downstream the wave field is associated with the Mach waves
generated by the instability wave. In the intermediate region, for 10 x 30, the interference between
the acoustic disturbance and the disturbance generated by the instability wave is evident. In contrast, from
figure (5) it can be seen that the strong instability waves dominate the solution at higher x for the lower
Strouhal number.
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Figure 5: Perturbation pressure contour plot for S 0 14 at the start of a cycle

Simulations with a scattering body

A scattering body, an ellipse with aspect ratio 20 : 3, is placed in the domain. It is centered at x 35, y 5. For
these computations, the physical domain is extended to x 65 and y 17. Figure (6) shows the instantaneous
pressure contours around the ellipse. A shadow region can be seen above the body. Figure (7) compares
instantaneous pressures for a domain containing the scattering body to a domain that does not, for a y location
just above the ellipse. It can be seen that there is a drop in pressure amplitude above and downstream of the
scattering body due to its presence. However, since the instability continues to be excited and grows further
downstream, the amplitude continues to increase beyond the body. In a case, such as a real jet, where the shear
layer grows, the instability would decay further downstream and the shielding effect of the ellipse would be
more evident. An application for this model problem would be the shielding of jet noise radiation for engines
mounted above the wing.

Figure 6: Instantaneous perturbation pressure contour plots around an ellipse outside the shear layer

All computations were performed on 16 processors of a Cray T3E at the University of Texas at Austin.
38200 seconds of total CPU time was used. A time step of 0146 seconds was used for 16800 iterations. The
equivalent single CPU/grid point/time step was 201 µs.
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.
and T&W radiation

outside, or again a buffer is added which extends up to

,
either outflow conditions (Tam and Dong (T&D) [4] or MOC) are specified for

. At the outflow at
, either T&W

radiation conditions are specified or a buffer zone is added which extends to
. At the far-field boundary,

and Tam
and Webb (T&W) radiation conditions [2] for

, characteristics based (MOC) boundary conditions [3] are used for

The two-dimensional excited shear flow provides a good test case to evaluate computational aeroacoustics
(CAA) algorithms and boundary conditions. Both the propagation of acoustic waves and the generation of
instability waves in the shear layer have to be accurately resolved. Also, due to the exponential growth of
the instability wave, the problem is in some respects even more demanding on boundary conditions than a
nonlinear flow problem.

An additional motivation for the present work was to compare boundary condition configurations which
had previously been applied to fully three-dimensional turbulent jet flows [1], where it had become clear that
further improvements were necessary. In practical CAA simulations, it is often necessary to average far-field
data over relatively long periods, and the minimization of artificial reflections at computational boundaries
plays an important role. Issues considered here are the placement of the different boundary conditions, the
location where they join, and the size of the computational domain compared to the physical domain. Also of
interest are the effects of grid stretching and refinement in the shear layer.

The linearized Euler equations are solved using the Dispersion-Relation-Preserving (DRP) scheme [2] on a
stretched grid and a RK4 scheme for time integration. Artificial sixth-order dissipation is added for stability.
At the inflow at



Two different buffer methods are evaluated:(i) a simple technique (Wasistho et al. [5]) where all perturba-
tion variables are forced to zero near the computational boundary by applying the buffer function

at every stage of the RK4 integration;(ii) a convective buffer (Freund type [6]) where the governing equations
are augmented by artifi cial convection ( ) and damping terms according to

Cosine profi les are chosen for both convection and damping.

Results and Discussion

Excited at the lower frequency, , the shear fl ow is unstable and generates exponentially growing
instability waves downstream of the source. The fl ow is neutrally stable for an excitation at and
the main radiation occurs in the vicinity of the excitation. Figure 1 shows the instantaneous pressure in the
shear layer for the two Strouhal numbers and different boundary conditions. The different solutions agree
very well. However, the instantaneous pressure has not been found to be a good measure to assess the quality
of the different boundary conditions used.

Simulations on various grids indicated that the minimum resolution required is determined by the resolu-
tion of the shear layer and not the number or grid points per wavelength of the acoustic or instability waves.
Suffi cient resolution in the -direction is found for 16 grid points per half-width of the shear layer. This
yields grid points within the physical domain . In order to reduce the total number of grid
points, calculations have also been carried out on geometrically stretched grids, where the resolution within

is kept at and then decreases to match the uniform axial grid spacing at . The
axial spacing is chosen to be 10, 15, 20, and 40, where is the acoustic wavelength at the excitation
frequency. Table 1 shows the grid sizes for both Strouhal numbers. A missing entry indicates that the cor-
responding resolution is either insuffi cient or not necessary to obtain acceptable solutions. The mean-square
pressure is averaged from to for and from to for .

Figure 2 shows the effects of grid resolution and stretching on the mean-square pressure at for
both T&D and MOC outfl ow ( ) boundary conditions. The mean-square pressure at the outer edge of the
computational domain appears to be very indicative of imperfections in the boundary conditions. Neglecting
the acoustic fi eld due to the exciting source, the pressure is expected to rise exponentially for .
Oscillations are due to refl ections at the boundaries. This will become clear below where the results for the
buffer zone approach are shown. One notes that the T&D boundary conditions perform considerably better
than the characteristics-based MOC boundary conditions. It is also interesting to note that the oscillations
become stronger as the resolution decreases, even though the shear layer is equally well resolved in the -
direction in in all cases ( ) and the resolution is at least points per wavelength in both directions
(whole domain). Differences are also noticeable between the stretched and uniform grid with the highest axial
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resolution. This is surprising since the resolution in these two cases is at least points per wavelength in the
whole domain.

Figure 3 shows the mean-square pressure at for . The waves that are convected across
the boundaries are much weaker for the higher Strouhal number and the MOC outfl ow boundary conditions
performed equally well (not shown). The main radiation is due to the acoustic source at , and the
radiation conditions at are well suited to let these waves leave the domain. The acoustically dominated
fl ow is suffi ciently resolved with points per wavelength and the stretched grid can be used without loss of
accuracy.

The infl uence of the artifi cial dissipation on the growth of the instability wave is shown in Fig. 4. Its effect
is relatively small for the whole range of values used. The simulations became unstable for ,
and a value of was chosen for all runs.

The advantages of a buffer zone approach over standard outfl ow boundary conditions are apparent in Fig. 5
for . The computational domain is extended to and , i.e. buffers are added
at the outfl ow and outer radiation boundaries. The grid inside the buffer is geometrically stretched by a factor
of , which increases the total number of grid points by only percent. The stretching is such that acoustic
waves at the buffer exit are still resolved by at least points per wavelength. Judging by the smoothness of
the mean-square pressure at , the simple Wasistho buffer produces the best results, followed by the
Freund approach where the fl ow is supersonically convected across the boundaries. One also sees that the
refl ections become considerably larger if the regular boundary conditions (T&W radiation and T&D outfl ow)
are prescribed at the exit of the enlarged domain instead of the physical boundary. This is due to the very
high amplitude of the exponentially growing disturbance at the new outfl ow location. The best T&D result of
Fig. 2(a) is shown for comparison (dotted line). It is not a priori clear whether these refl ections are caused
by the radiation or outfl ow boundary conditions, but one can clearly conclude that due to the nature of the
exponentially growing instability wave there is no benefi t in moving the boundary conditions further away
from the physical domain of interest.

The benefi ts of a buffer are smaller for . Compared in Fig. 6 are the mean-square pressure for
the Wasistho buffer (x =65, y =20) with results for T&D outfl ow conditions applied to both the enlarged
and regular domain. Results for the Freund buffer are identical and not shown. No further stretching is used in
the buffer region since for the resolution outside the shear layer is only points per wavelength.
It is likely that the radiation and outfl ow conditions perform, compared to the buffer approach, better for the
higher Strouhal number since, in that case, the main source location of the radiation is known ( ). One
notices that towards the exit ( ) the curve for the Wasistho buffer is much smoother than the ones for
T&D. A possible explanation for the deterioration in the latter case is the lower (second) order stencil near
the boundary. However, one would expect this infl uence to become negligible in the case where the boundary
conditions are applied to the extended domain. By increasing the strength of the acoustic source it has been
verifi ed that the irregularities are not due to numerical round-off errors.

Figure 7 indicates that the weak oscillations present in the mean-square pressure for the Freund buffer
zone (cf. Fig. 5) cannot be removed by increasing the amplitude of the damping function. Shown is the RMS
pressure at for the whole computational domain, including the buffer zone. Simulations are carried
out for , without observing any effect on the fl ow in the physical domain. The exponential
growth of the linear instability wave is too strong to be overcome by the artifi cial damping for the buffer size
used. It appears as if the artifi cial convection velocity in the buffer is the main contributor to the effectiveness
of the boundary condition, and that the damping does not play a signifi cant role. Instantaneous pressure
contours for the Freund buffer, showing the artifi cial convection within the buffer zone, are given in Fig. 8.
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The effectiveness of the Wasistho buffer is remarkable, and attempts to minimize its size have been made.
Figure 9 shows that the buffer size in the -direction can be reduced to without affecting the
results signifi cantly. The grid in the shorter buffer is again stretched by a factor of and the grid overhead
compared to the physical domain is now reduced to only percent. The buffer size could undoubtedly be
shrunk further. Figure 10 shows the damping functions in the -directions for the two buffer sizes. One notes
that the suppression of the outgoing waves occurs over a remarkably few grid points. Instantaneous pressure
contours for the larger Wasistho buffer are shown in Figure 11. One attractive feature of the Wasistho buffer
not shown is the observation that the grid in the buffer can actually be stretched beyond what would be required
to accurately propagate acoustic waves through the same domain.

Conclusions

Several boundary conditions, including buffer zones, have evaluated in terms of their effectiveness in letting
acoustic and instability waves leave the physical domain for the case of a two-dimensional shear layer. The
simple Wasistho buffer performs remarkably well without requiring a large buffer size and buffer resolution.
Tam and Dong outfl ow boundary conditions produce considerably less refl ections than nonrefl ecting MOC
boundary conditions for the shear fl ow investigated. Due to the nature of the exponentially growing instability
wave for , there is a clear disadvantage rather than advantage if standard boundary conditions are
applied to an enlarged domain. The quality of the boundary conditions is assessed based on the degree of
artifi cial oscillations in the mean-square pressure along the boundaries.
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Figure 1: Pressure along shear layer at . grid points in physical domain ( =50, =10).
Note that the pressure is interpolated onto a coarser mesh than that used in the simulations.
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Figure 2: Effects of grid resolution and stretching on mean-square pressure at ; .
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nx ny nx ny
— — 331 401 uniform
— — 331 195 stretched

116 130 stretched — —
155 145 stretched — —
309 401 uniform — —
309 183 stretched — —

Table 1: Grid size within physical domain ( , ).
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Abstract

The category 5 problem ‘Generation and Radiation of Acoustic Waves from a 2-D Shear Layer’ is solved based
on the 2-D linearized Euler equations. The dispersion-relation-preserving (DRP) finite difference scheme is
applied for spatial discretization and the low-dissipation and low-dispersion Runge-Kutta (LDDRK) scheme is
utilized for the time integration. Special attention is paid to the implementation of the non-reflecting far-field
boundary conditions.

Physical problem

It is well known that an acoustic source inside a jet can excite an instability wave in the shear layer. This will
result in sound generation and radiation to the far-field. The category 5 problem is an idealized case of this
physical phenomenon. The linearized Euler equations are utilized as the governing equations:

(1)

(2)

(3)

(4)

and the mean flow variables are given by
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The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis as
shown in Fig.1.

x

b

hU

y

Source

Figure 1: A sketch of the physical problem

The length scale is given by the half-velocity
distance . The velocity is scaled by the
jet velocity , the density by , the pres-
sure by , and the time and frequency by

. The constants are given as
(kg/m ),

K), (m/s),
(K), , (K), ,

, , ,
(m), (m), (kg/m

), and (1/ ).

Numerical Methods

The discretization scheme and non-reflecting far-field boundary conditions are the key technical issues for
accurate CAA simulations.
The present research employs the dispersion-relation-preserving (DRP) scheme Tam and Webb[5]. The 46
low-dissipation and low-dispersion Runge-Kutta (LDDRK) scheme by Hu et al. [2] is explored for time inte-
gration. Furthermore, in order to enhance the predictive quality of the solution and to stabilize the numerical
procedure, the selective artificial damping method [6] is adopted for eliminating short wavelength spurious
waves.
The non-reflecting boundary conditions in the far-field are crucial to the present numerical simulations.
The computational domain is depicted in Fig. 2 with and .
The characteristic boundary conditions by Thompson [7] are applied at the inflow boundary region where

. Since the inflow is supersonic, all characteristics are incoming and all are set to zero.
At the outer boundary region where the local mean flow Mach number , the asymptotic radiation
boundary conditions by Bayliss & Turkel [1] or Tam & Webb [5] are specified.
At the downsteam boundary region where , the outflow boundary conditions by Tam & Webb [5]
are implemented. This boundary condition has an assumption of uniform mean flow which is not true for the
present flow cases. However, the numerical results given below are rather good with little reflections.
A symmetric boundary condition is applied at .
The developed CAA code has been validated by a series of benchmark problems from the first and second
CAA workshops. It has been written into a parallelized version and applied to duct acoustics[3][4].
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Simulation Results and Discussions

Oneofthe maindifficultiesof simulatinga shear layer ina large computational domain lies in different resolution
requirements in different regions. Usually, the grids must be fine enough to capture the sound generation
process across the thin shear layer whereas the grids can be relatively coarse in the propagation region. For
simplicity, a uniformly distributed small mesh size has been used in all the simulations with

. This ensures a high resolution across the whole computational domain. However, much
more CPU time is required due to a large number of grid points. For accelerating the computations, 24 evenly
distributed multi-block grids are generated by a domain decomposition technique [3]. All the computations
are performed on a 24 PC cluster (Pentium II 450Mhz). Numerical calculations show that the CPU time is 0.6
second per time step. And the parallel efficiency is 80%.
For , the time step size is chosen as . The instantaneous pressure contours at

(at the start of cycle 31) are shown in Fig. 3. The radiation pattern shows that the acoustic
intensity increases along the downstream direction. This implies that the acoustic source inside the jet has
excited an amplified instability wave mode which has generated and radiated amplified sound field along the
downstream direction. There are very little reflections at all the outer computational boundaries. Fig. 4 gives
the sound pressures along the line for which also shows the amplification tendency
along the downstream direction.
For , the time step size is chosen as . The instantaneous pressure contours are
shown in Fig. 5 at (at the start of cycle 122) whereas the pressures along the line

are shown in Fig. 6. Quite different from the case of , the acoustic intensity for
approaches a stable level along the downstream direction gradually. This indicates that a neutral instability
mode has been excited at . Furthermore, the outer boundary conditions have also been shown very
effective with little reflections.
Figs. 7 and 8 give the calculated sound intensities along for and ,
respectively. The far field prediction results (along ) are consistent with the near field prediction
results (along ), (see Figs. 4 and 6). The sound intensities along (downstream
boundary) are shown in Figs. 9 and 10 for and , respectively. We can see that the sound
intensity of case is approximately several thousands larger than that of the case .
Table 1 gives a summary of the computer used, the number of grid points, the total CPU time, the time step
size and the total number of time steps, etc.

Table 1: A summary of main parameters in the calculations
Main parameters St=0.14 St=0.60
Computer used 24 PC (Pentium II 450Mhz) 24 PC (Pentium II 450Mhz)
Number of grid points (each block) 25245 25245
Total number of grid points 605880 605880
Time step size 0.014285714 0.011111111
Total time steps 30000 36300
CPU time per time step 0.6s 0.6s
CPU time on each PC (s) 18000 25245
Total CPU time (s) 432000 522720
Parallel efficiency 80% 80%

NASA/CP—2000-209790 325



NASA/CP—2000-209790

Ma<0.001

Characteristic inflow BC

Radiation BC

Symmetric BC

Radiation BC

Ma<0.001

Asympotic outflow BC

Radiation BC

Figure 2: The computational domain and boundary conditions.
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Conclusions

The generation and radiation of acoustic waves from a 2-D parallel shear layer is calculated based on the
linearized Euler equations. The high order DRP scheme and LDDRK scheme are applied for space and
time discretizations, respectively. Appropriate non-reflecting boundary conditions have been implemented
for different boundary regions. All the computations were performed on a 24-PC cluster efficiently by the
parallelized CAA code. Numerical results have shown that and are corresponding to an
amplification and a neutral instability mode, respectively. Further work is still required on grid generation and
far-field boundary conditions.
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Fig. 1 Spatial node locations
of the two grid sets (hollow 
and solid circles).

Fig.2  (a) conservation element,
       (b) solution element.
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AEROACOUSTIC COMPUTATIONS OF THE UNSTEADY FLOWS
OVER A RECTANGULAR CAVITY WITH A LIP

Young J. Moon,∗  Sung R. Koh, Yong Cho, and Jong M. Chung
Department of Mechanical Engineering

Korea University
Seoul, Korea

Introduction

A problem of automobile noise involving feedback is solved. Figure 1 shows a schematic configuration of a
cavity with a lip, which models a gap between the front and back doors of an automobile. A self-sustained
free shear layer impingement on the downstream cavity edge generates a tonal noise, and this could be one
of the major automobile airframe noise sources. In the experiment (ref. 1), turbulent boundary layer flows
with free stream velocities of 26.8 m/s (case 1) and 50.8 m/s (case 2) are tested with the boundary layer
thicknesses of 15 mm and 19 mm, respectively.

In the present study, we start with laminar flow calculations to understand basically what the important
parameters computationally in simulating this type of flow are and how relevantly these solutions compare
with experiment. So we calculate two cases with the same incoming velocities as the experiment, but
reduced the boundary layer thickness to 10% of the cavity base length, L. The Reynolds numbers based on a
displacement thickness are 850 and 1,620 correspondingly for the cases 1 and 2, and these are within a
range between 600 and 3000 for the laminar instability of a free shear layer.

Since the flow speeds of both cases are low enough to be assumed as an incompressible flow (i.e.∞M =
0.077 and 0.147), a splitting approach proposed by Hardin and Pope (ref. 2) was taken. The unsteady
incompressible Navier-Stokes equations are first solved by an unstructured triangular mesh flow solver,
which is based on a cell-centered finite-volume formulation. Then the unsteady flow solutions are coupled
with a set of acoustically perturbed equations for the acoustic field computations.

Numerical methods

The unsteady incompressible Navier-Stokes equations are solved by using a projection method based
algorithm called SMAC (Simplified Marker and Cell) (ref. 3). First, the momentum equations are split into
two steps:

ˆ
, ( )

u u
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Instead of solving eq. (2), we solved a divergent form of this while enforcing the continuity eq., which is
then a Poisson equation of,

∇ = ∇ ⋅ ≡ ⋅2 3φ φ δˆ ( ) ( )u p t∆
The velocity and pressure fields at n+1 step are then updated from
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The governing equations (1), (3), and (4) are discretized on unstructured triangular meshes by a cell-
centered based finite-volume method. The momentum equations (eq. (1)) are expressed as

Ω ∆ ∆ ∆ ∆i i i v v i j
j k i

Q t F F y G G x/ ( / Re) / ( / Re) / ( ),
( )

= − − − −[ ]
=
∑ 5

and solved by a four-stage Runge-Kutta method in time, with the second-order upwind scheme applied to
the convective fluxes in the right hand side. The Poisson equation, eq. (3), are also cast

φ φ φ φ φ φx y
j k i j k i

x yy x u y v x dy dx∆ ∆ ∆ ∆
Ω Ω
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1 1
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and solved by a point Gauss-Seidel relaxation method. These solution procedures are sub-iterated until
satisfying the continuity equation at each time level.

The fluctuating quantities of velocities, pressure, and density from the mean state are defined as

u U u p P pi i i= + = + = +' ' ', , ( )ρ ρ ρ0 7

and a set of acoustic field equations [4] are derived by subtracting the incompressible Navier-Stokes
equations from the compressible Navier-Stokes equations;
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where iii Uuf '' ρρ +=  and ργ /2 Pc = . Equations (8) are solved by a MacCormack’s predictor-corrector
scheme, coupled with the solution procedure described above for the unsteady flow calculation.

Unsteady incompressible flow and acoustic field computations

A self-sustained periodically oscillating flow over a cavity with a lip is calculated on unstructured triangular
meshes. In the present computation, all the length scales are non-dimensionalized by the cavity base length
L. Figure 2 shows a global view of computational meshes with a total of 11,240 elements (case 1). One
hundred and ten mesh points are used in the streamwise direction for the upstream region, where a laminar
boundary layer develops and grows to a thickness close to 0.1*L. For the downstream region where the
vorticity waves propagate, 200 mesh points are used, since the grid resolution on that region might affect the
unsteady solution accuracy of the flow in feedback mechanism. One other crucial scale for resolving the
free shear layer instability is a normal grid spacing across it. So a minimal normal spacing of 0.001 is used
for case 1, and 0.0005 for case 2, with 100 mesh points distributed in y-direction from the wall to the top
boundary. The feedback mechanism is generated by disturbances from the downstream cavity edge, which
then propagate upstream and enhance the vortex shedding from the lip. Therefore, in order to resolve this
flow feature, 40 points are used across the lip, 60 along the lip, and 80 along the cavity opening. For the
cavity inside flow, 100 points are also distributed along the left vertical wall. Also one more important
factor that affects the solution of this problem is an outflow boundary condition. In this study, a convective
boundary condition is imposed at the downstream outflow boundary. For example, a wave equation,

0// =∂∂+∂∂ xct φφ , is solved at the boundary, where φ  is either u or v and a local streamwise velocity is
used for c representing a local wave speed.

The self-sustained oscillating flows are computed for case 1 and the solutions of the first shear layer mode
are presented in Fig. 3 for the two instants in one period. The first one (cavity: expansion) corresponds to a
non-dimensional time, tU/L, at 35.9 and the second one (cavity: compression) is 0.41*T apart from the first
one, where T indicates a period of oscillation close to 1.47. This value also corresponds to a Strouhal
number of 0.68 or 1,215 Hz in frequency. This periodic behavior is demonstrated in Fig. 4 by a time history
of v-velocity right before the downstream cavity edge. This regularity of unsteadiness in a feedback
mechanism is well captured by the present grid (called grid-a), although this computation is quite sensitive
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to the grid resolution on many aspects of parameters. We have done some of the grid sensitivity tests: (i)
doubling the minimum normal grid spacing (grid-b) and (ii) halving the grid points in the streamwise
direction for the downstream region where the vorticity waves convect (grid-c). The computed results for v-
velocity at the downstream cavity edge are shown in Fig. 5. The regularity of this unsteady flow feature
starts to break down on grid-b and gets even worse on grid-c. The computed periodicity of the flow,
however, is still somewhat maintained on both grids. Comparing the vorticity waves computed on two
different grids, Fig. 6 might indicate a point such that the grid resolution in the downstream region could
play an important factor for imposing a different numerical impedance to the vorticity wave propagation,
and that might feed back to affect the unsteady flow behavior upstream.

An acoustic field of this oscillating flow is computed on the cartesian grid shown in Fig. 7. Since the flow
Mach number is quite low as 0.077 for case 1, the acoustic wave length is approximately close to 19 based
on the relation, )(/1/ ∞⋅= MStL Lλ , and therefore the computational domain is stretched out to ± 60 to
include a couple of acoustic wavelengths. The number of grid points is selected such that roughly 25 points
are included in one wave length for the use of the MacCormack’s scheme in the computations. The
computed sound pressure field is presented in Fig. 8, where the dashed line indicates the boundary of PML
zones. One can see from the left figure that the PML boundary condition encounters some difficulties
handling outgoing acoustic waves. The shaded flooding contours also show well a nearly circular radiation
of sound waves generated from the cavity (shown as a very tiny stick-out at (0,0) in the figure). The
computed acoustic wave length is close to 18, and the highest intensity of the radiated sound noise is
between 135 and 180 degrees, meaning that the passengers sitting in the front seats will hear louder noise.
The computed sound noise level outside of the cavity is approximately in the range of 80-90 dB. The sound
pressure field near and inside of the cavity is shown in Fig. 9, indicating that the cavity inside experiences a
lateral mode of compression and expansion, as a vortex shed from the lip starts to roll upstream of the
opening and then impinges off the downstream cavity edge, alternately. Figure 10 shows a time history of
the sound pressure at the center of the left vertical wall, and the sound pressure level (SPL) is predicted as
118 dB with a frequency of 1,215 Hz. Even though the computational condition (a relatively thin laminar
boundary layer) is different from the experimental one (a thick turbulent boundary layer), quantitative
comparisons are within a range. Figure 14 shows experimental results for cases 1 and 2. In case 1, the
experiment seemed to experience a dual shear layer mode of one and two. The unsteady characteristics are
not so strong as the case 2, but they are surely in the same frequency range as the present computational
result, though SPL was quite over-predicted by the present calculation.

The computational results for the case 2 are also presented in figures 11-13. The computational results show
a similar value of a Strouhal number close to 0.65 (or 2,080 Hz) and the acoustic wave length of 9.5, which
is also quite close to an estimated value of 10. See Fig. 12 for the computed sound pressure field. The SPL
of 133 dB inside the cavity left wall was also predicted from the computed result of p’ shown in Fig. 13. The
frequency and SPL are quite closely compared with experimental data shown in Fig. 14.

Conclusions

Unsteady flow computations of a self-sustained feedback flow are quite sensitive to the mesh size,
computational domain, and outflow boundary conditions. Difficulties in keeping the numerical consistency
are encountered in these unsteady flow computations and further investigations are in definite need,
including the flow calculations with thick turbulent boundary layers.
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Fig. 1 A schematic of cavity configuration 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Computational meshes (11,240 triangular elements): gobal and near cavity views 

 

Fig. 3 Vorticity contours at two instants in a period (shear layer mode 1, case 1)  
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Fig. 4 Oscillating flow in a feedback (v-velocity near the downstream cavity edge, grid-a, case 1) 

 

  
Fig. 5 Grid sensitivity test (grid-b & c) 
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Fig. 6 Comparison of vorticity wave propagation 
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Fig. 7 Grid for acoustic field computation 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 Sound pressure fields (---: PML zones, case 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Fig. 9 Sound pressure field near the cavity            Fig. 10 Time history of p’ inside cavity on 
                                                     a center of the left wall (case 1)
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Fig. 11 Oscillating flow in a feedback (v-velocity near the downstream cavity edge, case 2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                              Fig. 13 Time history of p’ inside cavity on 

         Fig. 12 Sound pressure field (case 2)                a center of the left wall (case 2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 SPL spectrum (case 1 & 2, Exp.: Henderson) 
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Abstract

We present results for computing the unsteady flow around a two-dimensional
automobile door cavity. The solution of the unsteady, compressible Navier-Stokes
equations is performed using the CFL3D code. By using a multi-block strategy, stretched
grids refined in regions of high vorticity and small time steps we are able to capture fine
vortical structures. A Wilcox k-ω turbulence model is used, which is integrated through

to the wall. Simple extrapolation boundary conditions are used at the edge of the
computational domain. Results for a flow speed of 50.9 m/s with a thick (2.2 cm at the
cavity leading edge) incoming turbulent boundary layer are presented. These agree well
with experimental data, although the presence of numerical reflections is of concern.

Problem Description
The benchmark problem, category 6, is representative of the flow around an automobile
door cavity [1]. The geometry of the test case specified at the workshop is shown in
Figure 1. In this paper we present results for a flow speed of 50.9 m/s with an incoming
turbulent boundary layer which is 2.2 cm thick at the leading edge of cavity. A one-
seventh power-law velocity profile is assumed,

7
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where δ is the boundary layer thickness.

Computational results are non-dimensionalised in time and space with respect to the
freestream speed of sound and cavity mouth width (8.76mm).

Solution Strategy
In order to compute the flow over the door cavity we use the CFL3D code (version 5).
This is a multi-block, compressible, finite-volume, unsteady RANS solver [4, 5].  In the
work presented here the code is configured to use second-order central differencing for
both the viscous and inviscid terms.  Fluxes at the cell faces are calculated by the flux-
differencing-splitting method of Roe.  An implicit three-factor approximate factorisation
method is used to advance the solution in time. For the results presented here we use
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CFL3D’s t-TS sub-iteration option [5], with ten sub-iterations per physical time step to
obtain second-order temporal accuracy. While CFL3D has not been specifically designed
for aeroacoustics problems, it has been shown to be able to resolve flow structures
responsible for noise generation processes when suitably fine mesh and time steps are
used [2, 3].

For this door cavity test case we have used an eleven-block grid, shown in

Figure 2.  A total of 68,736 grid cells are used. The grid is refined significantly along the
walls (∆y+<1 at the wall), and notably along the cavity mouth in order to resolve the

shear layer correctly.  Grid stretching within the cavity was kept to a minimum, but
outside of the cavity grid stretching was used in conjunction with a coarse ‘buffer region’
to damp disturbances before they encountered the outflow boundary.

Adiabatic, no-slip boundary conditions are imposed on all solid walls in the computation.
Along the upstream boundary the three velocity components are fixed describing the
approaching turbulent boundary layer profile, together with the two turbulence quantities,
k and ω, appropriate to the turbulence model being used. Wilcox’s EDDYBL turbulent

boundary layer program has been used to ensure that the specified profile provides the
correct boundary layer at the cavity lip [6].

At the outflow boundary downstream of the cavity, zeroth-order extrapolation is used.
Along the upper computational boundary characteristic 1-D Riemann invariants are
solved. The use of these simple boundary conditions does, not surprisingly, lead to
reflections, which degrade the solution quality for long-times.

For the results presented here the simulation is run to steady state initially for 1000
iterations. It is then restarted in unsteady mode. Numerical oscillations after the unsteady
restart appear to settle down quickly, after around 2000 iterations. For the purposes of
this benchmark we output the fluctuating pressure signal on the entire left-wall of the
cavity.

All computations were run on Pentium III 450MHz and 500MHz PCs. CFL3D was
compiled with Digital Visual FORTRAN (version 6), using aggressive compiler
optimisations, under Windows NT 4 Workstation (Service Pack 4). Run times were of the
order 24 hours for 2000 iterations (one shedding cycle) on a single 500MHz processor.

Results and Discussion
After several preliminary simulations with different grids, we found that we were able to
resolve flow separation, secondary vortex structures, and corner flow within the cavity
using the grid described above.

Vorticity contour plots for a single cycle of the cavity mouth shear layer are presented in
Figure 3.  We show results for the case with a large time step, ∆τ=0.01. Refining the time

step by an order of magnitude shows no change in the solution, with changes in peak-to-
peak pressure amplitude of less than 0.1%.  Therefore we are confident that the coarse
time-step solution is converged.
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A comparison of the measured [1] and calculated spectrum of the pressure signal is
shown in figure 4 for the coarse time step, with frequency and amplitude comparisons
given in Table 1. The spectrum was obtained by averaging the CFD results over an area
equivalent to that covered by the (1/4 inch diameter) microphone in the experiment. A
flat-top window was used for the FFT analysis, with a bandwidth of 49 Hz. Note that the
experimental results are at a lower speed and with a thinner boundary layer than that
specified in the original problem statement (and used in the CFD). This may account for
some of the discrepancy between the experimental and computational results.
Additionally, in the experiment the flow was seen to randomly switch preferred modes.
Henderson [1] states that she does therefore not expect numerical results to be closer than
approximately 3-5 dB of experiment.

The CFD results agree well with the experimental observations for the near-field initially.
The presence of reflections that appear to be emanating from the upstream computational
boundary is cause for serious concern, and is likely to be due to the specification of the
inflow boundary condition, and the use of low order extrapolation at the outflow
boundary. The use of a larger computational domain with non-reflecting boundary
conditions is required for accurate long-time simulations to be run with confidence.

Frequency (Hz) Sound Pressure
Level

Experiment
50m/s, 1.9cm boundary layer

1824
3552

134
111

Unsteady RANS CFD simulation
50.9m/s, 2.2cm boundary layer

1960
3920

141
111

Table 1. Frequency and sound pressure levels from pressure signal at the centre of
the door cavity left wall

Conclusions

In this paper we present unsteady CFD results for an automobile door cavity using a
compressible RANS code. With careful grid construction and small time steps the near-
field unsteady flow is captured. The spectrum of the pressure signal agrees well. The use
of fixed inflow and low-order extrapolation boundary conditions leads to reflections,
which degrade the solution. Extending the computational domain and implementing non-
reflecting boundary conditions are necessary to carry out longer-time simulations for far-
field acoustic calculations. For this problem we have demonstrated that the use of a low-
order, unsteady RANS code can give reasonable results for the near-field aeroacoustics
and it is the lack of non-reflecting boundary conditions which currently limits the
application of this approach.
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Figures

Figure 1: Door cavity geometry with multi-block structure

Figure 2: Computational grid around cavity mouth
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a) τ=20 b) τ=24

c) τ=28 d) τ=32

e) τ=36 f) τ=40

Figure 3: Vorticity plots at non-dimensional times (ττττ) 20, 24, 28, 32, 36 and 40
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A PARALLEL NUMERICAL SIMULATION OF
AUTOMOBILE NOISE INVOLVING FEEDBACK

Chingwei M. Shieh and PHILIP J. MORRIS†
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Abstract

A parallel numerical simulation of cavity flow and noise at low subsonic Mach number is presented
in this paper. The one-equation Spalart-Allmaras model is implemented to simulate the turbulent flow
phenomena in two dimensions. In order to prevent excessive numerical dissipation from the turbulence
model in separated flow regions, the Detached Eddy Simulation (DES) proposed by Spalart et al. [1]
is used. Laminar and turbulent simulations have been carried out for a Mach 0.15 flow. An incoming
boundary layer thickness of 0 05D is selected to insure tone generation. Various phenomena of the cavity
flow are examined. Frequencies and sound pressure levels of the tones are calculated and presented in this
paper.

1 Introduction

Significant attention has been paid to the reduction of automobile aerodynamic noise in recent years. This
is due to a tremendous decrease in the noise generated by engines, tires, transmission, and many other com-
ponents. Since a major source of automobile aerodynamic noise is due to flow over cavities such as open
windows or door gaps and seals, the elimination of cavity noise can offer a commercial advantage in the au-
tomobile industry by creating a more comfortable and environmentally friendly vehicle. In this paper, both
direct numerical simulations and unsteady Reynolds Averaged Navier-Stokes (RANS) calculations of a sub-
sonic flow over a deep cavity are presented. This research is part of an effort to understand the noise generation
mechanisms of deep cavities, and ultimately to minimize this noise source.

2 Numerical Approach

The governing equations that describe the near-field turbulent flow and the far-field acoustics are the com-
pressible Navier-Stokes equations. With the implementation of Favre averaging and the assumption of the

Graduate research assistant
†Boeing/A. D. Welliver Professor of Aerospace Engineering
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Boussinesq eddy viscosity approximation, the governing equations, using a standard nomenclature, can be
written as

∂ρ
∂t

∂ρui

∂xi
0 (1)

∂ ρui

∂t
∂

∂x j
ρu jui

∂p
∂xi

∂
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∂ ρEt

∂t
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p
ρ

∂
∂x j

qL j qTj ui σi j τi j (3)

where σi j is the laminar viscous stress tensor, τi j is the Reynolds stress tensor, and qTj is the turbulent heat
flux. Notational differences between Reynolds and Favre averaging have been omitted for simplicity. The
Reynolds stress tensor is modeled with the use of the one-equation Spalart-Allmaras turbulence model [2],
where the eddy viscosity is determined from
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χ3 c3
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χ
ν̃
ν

(5)

ν and νt are the kinematic laminar and eddy viscosities respectively. A modification to the turbulence produc-
tion term in Eq. (4), proposed by Edwards and Chandra [3], has been implemented to provide a more stable
calculation in modeling near-wall behavior. In order to prevent excessive numerical dissipation from the tur-
bulence model in separated flow regions, a hybrid RANS/LES approach called the Detached Eddy Simulation
(DES), proposed by Spalart et. al [1], has been used. In DES, the distance to the closest wall, d, in Eq. (4) is
replaced with d̃ min d CDES∆ where ∆ max ∆x ∆y and CDES is an adjustable constant, set to unity in
present calculations.

The governing equations are discretized with a fourth-order, seven-point stencil, DRP differencing oper-
ator spatially, and are integrated in time explicitly with the use of a fourth-order Runge-Kutta method. A
parallel multiblock implementation with pipeline block communication is employed to take advantage of the
geometry of the problem. This is an extension to the parallel multiblock implementation proposed by the
authors [4]. Solid wall boundaries are assumed to be adiabatic, and the no-slip boundary condition is applied.
A small section of the wall upstream of the cavity is assumed to be a slip wall. This allows the flow to trigger
the onset of boundary layer growth naturally, while simplifying the implementation of the inflow boundary
condition so that a Riemann invariant boundary condition can be employed. For the far-field and the outflow
boundaries, the MOC boundary condition is used.

For the laminar calculation, the number of grid points used for the computational meshes are 171 97 and
59 113 for the upper block and the cavity block respectively. The meshes used for the turbulent calculation
have 171 113 and 59 135 grid points respectively for the two blocks. Simulations are run on the new PC
cluster at Penn State, with 32 dual 500 MHz Intel Pentium III nodes (64 processors) and a fast ethernet network
with 100 Mbits/s transfer rate. The equivalent single CPU/grid point/time step of the code is 226 µs, and about
30% of the run time is spent on communication. This is reasonable, since additional communications need to
be performed for the block interface. The relative communication time will drop further for three-dimensional
calculations or larger problems.
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3 Results and Discussions

Initial time-dependent RANS calculations with the splitter plate in the original configuration and an incom-
ing turbulent boundary layer thickness of about 10% of the total cavity depth showed that the flow was
not able to maintain a self-oscillatory mode. According to the the experimental study by Sarohia [5], for
a thin incoming boundary layer such that δ0 D 0 5, the value of the nondimensional length of the cavity
Lmin δ0 Re δ0 D has to be above 290 for a sustained flow oscillation to occur. Therefore, to satisfy this

criterion, a new configuration has been set up in which the splitter plate has been removed. This eliminates the
difficulty that arises from the multiple scales present in the original configuration, and isolates the investigation
to the effects of boundary layer thickness on cavity flow oscillations.

Both laminar and turbulent calculations have been performed for the new configuration, and results are
discussed in this section. The Mach number of the flow is 0.15, and the Reynolds numbers based on the cavity
depth are 15000 and 335041 for the laminar and turbulent calculations respectively. These Reynolds numbers
correspond to an incoming boundary layer thickness δ0 D of 0.05 in both cases. For the laminar case, the
nondimensional cavity length based on Sarohia’s analysis is calculated to be 317, so this satisfies the minimum
cavity length criterion for flow oscillations. It is still not clear whether the same criterion can be applied to
turbulent flows.
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Figure 1: Instantaneous contours of nondimensional density for a laminar, M 0 15, Re 15000, L D
0 58, δ0 0 05D cavity flow at different times, corresponding to approximately one period of the large-scale
structure oscillation. Contour levels range from 0.995 (dark) to 1.001 (light).

Figure 1 shows the instantaneous contours of nondimensional density (ρ ρ0) for the laminar calculation at
different nondimensional times that correspond to approximately one period of the large-scale structure evo-
lution inside the shear layer. As the vortical structure impinges on the downstream cavity wall, part of it spills
over the cavity and continues to travel downstream, forming smaller vortical structures along the downstream
flat plate. The rest of the vortex rolls underneath the downstream cavity edge, creating a recirculating region.
The presence of a well-formed, trapped vortical structure is more prominent in deep cavities, and the present
calculation agrees qualitatively with the experimental work of Roshko [6] and Maull and East [7]. Unlike
shallow cavities, the flow oscillates in a depth mode for deep cavities, more like a Helmholtz resonator. This
is shown in Figure 2. The instantaneous pressure is sampled for a nondimensional time of 32 that corresponds
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to approximately four periods of the large-scale structure evolution in the shear layer. The sound pressure
levels are calculated from this data, and the acoustic field indicates that the sound source due to the flow over
the cavity behaves like a monopole, as shown in Figure 3.
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Figure 2: Instantaneous contours of nondimensional pressure for a laminar, M 0 15, Re 15000, L D
0 58, δ0 0 05D cavity flow at different times. Contour levels range from 0.71415 (dark) to 0.7147 (light).

123.1

121.9

120.8

120.0

119.2

118.5

117.7

116.9

11
6.

2

-1.00 0.00 1.00 2.00
0.00

1.00

2.00

3.00

Figure 3: Contour levels of sound pressure level for the laminar calculation.

The far-field noise generation mechanism for the laminar and the turbulent cavity flows is quite similar:
however, the main difference lies in the near-field flow solution. Figure 4 shows a series of instantaneous
nondimensional density contours at different nondimensional times that correspond to approximately one
period of the vortical structure evolution in the turbulent shear layer. It is evident that there are multiple large-
scale structures present inside the cavity. The largest large-scale structure undergoes roughly a solid-body
rotation, while smaller structures from vortex shedding in the turbulent shear layer are swept up by the main
vortex. This results in a stronger recirculation zone, as indicated by the mean shear layer profiles and the
streamline contours for the laminar and turbulent case shown in Figures 5 and 6 respectively.

Time history data at position 0 0 0 5 have been sampled, and an FFT has been used to calculate the
power spectral density of the data. This is plotted in Figure 7 for both the laminar and turbulent calculations.
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Figure 4: Instantaneous contours of nondimensional density for a turbulent, M 0 15, Re 335041, L D
0 58, δ0 0 05D cavity flow at different times, corresponding to approximately one period of the large-scale
structure oscillation. Contour levels range from 0.995 (dark) to 1.001 (light).
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Figure 5: Mean shear layer profiles at various x locations and mean streamlines inside the cavity for the
laminar calculation.
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Figure 6: Mean shear layer profiles at various x locations and mean streamlines inside the cavity for the
turbulent calculation.

According to the analysis by Tam [8], the lowest normal mode of a L D 0 58 two-dimensional rectangular
cavity has a mode frequency of 2191.32 Hz. Even though this analysis is based on the no flow condition,
the model should be a reasonable approximation since the current flow Mach number is only 0.15. For
the laminar calculation, the lowest mode frequency from the power density spectrum is 2018.08 Hz. The
frequency resolution is ∆ f 87 75Hz. Higher harmonics are also captured in the current calculation. For
the turbulent calculation, the fundamental mode has a lower frequency, 1852.61 Hz, than the laminar case, as
shown in Figure 7. Besides higher harmonics of the normal mode, there are also higher frequency modes as
well as a very low frequency content that is present in the turbulent case. This very low frequency mode can
be seen clearly from the time history of the data as shown in Figure 8. Similar observations have been made
in the experimental work by Henderson [9], though the cavity configurations are different.

4 Summary and Conclusions

Simulations of low subsonic flow, M 0 15, over a deep cavity, L D 0 58, are presented in this paper.
The splitter plate from the original problem configuration has been removed in the present simulations. The
incoming boundary layer thickness is kept at δ0 D 0 05 for both the laminar and turbulent calculations. At
such a low Mach number, the deep cavity is under a normal resonance, and the frequency of the lowest normal
mode for the laminar case compares well with the analytic result. For the turbulent case, the dominant mode
has a slightly lower frequency than the laminar case, and there is a very low frequency oscillation that is also
observed in the experiment work. More analysis needs to be performed to ascertain the physical nature of the
very low frequency oscillation in the turbulent calculation.
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Solutions to Category 1 Problem 2

1)  Mean Pressure Distribution
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2)  Perturbation Pressure Distribution
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3)  Perturbation Pressure History at Exit Plane
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COMPARISON OF ANALYTICAL AND CAA SOLUTIONS
CATEGORY 3, BENCHMARK PROBLEM 1
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COMPARISONS WITH ANALYTICAL SOLUTION: CATEGORY 5

MILO D. DAHL
NASA Glenn Research Center

Cleveland, OH

0 10 20 30 40 50
x/R1/2

10
−15

10
−14

10
−13

10
−12

10
−11

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, y/R1/2 = 10

Total Solution
Instability Wave Solution
Bailly

2 4 6 8 10
y/R1/2

10
−12

10
−11

10
−10

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, x/R1/2 = 50

Total Solution
Instability Wave Solution
Bailly

Bailly

0 10 20 30 40 50
x/R1/2

10
−15

10
−14

10
−13

10
−12

10
−11

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, y/R1/2 = 10

Total Solution
Instability Wave Solution
Hu

2 4 6 8 10
y/R1/2

10
−12

10
−11

10
−10

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, x/R1/2 = 50

Total Solution
Instability Wave Solution
Hu

Hu

NASA/CP—2000-209790 413



0 10 20 30 40 50
x/R1/2

10
−15

10
−14

10
−13

10
−12

10
−11

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, y/R1/2 = 10

Total Solution
Instability Wave Solution
Li

2 4 6 8 10
y/R1/2

10
−12

10
−11

10
−10

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, x/R1/2 = 50

Total Solution
Instability Wave Solution
Li

Li and Thiele

0 10 20 30 40 50
x/R1/2

10
−15

10
−14

10
−13

10
−12

10
−11

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, y/R1/2 = 10

Total Solution
Instability Wave Solution
Lockard

2 4 6 8 10
y/R1/2

10
−12

10
−11

10
−10

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, x/R1/2 = 50

Total Solution
Instability Wave Solution
Lockard

Lockard and Atkins

NASA/CP—2000-209790 414



0 10 20 30 40 50
x/R1/2

10
−15

10
−14

10
−13

10
−12

10
−11

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, y/R1/2 = 10

Total Solution
Instability Wave Solution
Loh

2 4 6 8 10
y/R1/2

10
−12

10
−11

10
−10

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, x/R1/2 = 50

Total Solution
Instability Wave Solution
Loh

Loh, Wang, Chang, and Jorgenson

0 10 20 30 40 50
x/R1/2

10
−15

10
−14

10
−13

10
−12

10
−11

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, y/R1/2 = 10

Total Solution
Instability Wave Solution
Scheidegger, Wasistho BC
Scheidegger, Tam and Dong BC
Scheidegger, Freund BC

2 4 6 8 10
y/R1/2

10
−12

10
−11

10
−10

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, x/R1/2 = 50

Total Solution
Instability Wave Solution
Scheidegger, Wasistho BC
Scheidegger, Tam and Dong BC
Scheidegger, Freund BC

Scheidegger and Morris

NASA/CP—2000-209790 415



0 10 20 30 40 50
x/R1/2

10
−15

10
−14

10
−13

10
−12

10
−11

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, y/R1/2 = 10

Total Solution
Instability Wave Solution
Stanescu

2 4 6 8 10
y/R1/2

10
−12

10
−11

10
−10

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.14, x/R1/2 = 50

Total Solution
Instability Wave Solution
Stanescu

Stanescu, Ait-Ali-Yahia, and Habashi

0 10 20 30 40 50
x/R1/2

10
−17

10
−16

10
−15

10
−14

10
−13

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.60, y/R1/2 = 10

Total Solution
Bailly

2 4 6 8 10
y/R1/2

10
−16

10
−15

10
−14

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.60, x/R1/2 = 50

Total Solution
Bailly

Bailly

NASA/CP—2000-209790 416



0 10 20 30 40 50
x/R1/2

10
−17

10
−16

10
−15

10
−14

10
−13

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.60, y/R1/2 = 10

Total Solution
Hu

2 4 6 8 10
y/R1/2

10
−16

10
−15

10
−14

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.60, x/R1/2 = 50

Total Solution
Hu

Hu

0 10 20 30 40 50
x/R1/2

10
−17

10
−16

10
−15

10
−14

10
−13

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.60, y/R1/2 = 10

Total Solution
Li

2 4 6 8 10
y/R1/2

10
−16

10
−15

10
−14

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.60, x/R1/2 = 50

Total Solution
Li

Li and Thiele

NASA/CP—2000-209790 417



0 10 20 30 40 50
x/R1/2

10
−17

10
−16

10
−15

10
−14

10
−13

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.60, y/R1/2 = 10

Total Solution
Lockard

2 4 6 8 10
y/R1/2

10
−16

10
−15

10
−14

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.60, x/R1/2 = 50

Total Solution
Lockard

Lockard and Atkins

0 10 20 30 40 50
x/R1/2

10
−17

10
−16

10
−15

10
−14

10
−13

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.60, y/R1/2 = 10

Total Solution
Scheidegger, Wasistho BC
Scheidegger, Tam and Dong BC

2 4 6 8 10
y/R1/2

10
−16

10
−15

10
−14

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.60, x/R1/2 = 50

Total Solution
Scheidegger, Wasistho BC
Scheidegger, Tam and Dong BC

Scheidegger and Morris

NASA/CP—2000-209790 418



0 10 20 30 40 50
x/R1/2

10
−17

10
−16

10
−15

10
−14

10
−13

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.60, y/R1/2 = 10

Total Solution
Stanescu

2 4 6 8 10
y/R1/2

10
−16

10
−15

10
−14

M
ea

n 
S

qu
ar

ed
 P

re
ss

ur
e 

p’
2  (

kg
/m

 s
2 )2

Strouhal No. = 0.60, x/R1/2 = 50

Total Solution
Stanescu

Stanescu, Ait-Ali-Yahia, and Habashi

0 10 20 30 40 50
x/R1/2

−8e−06

−6e−06

−4e−06

−2e−06

0e+00

2e−06

4e−06

6e−06

8e−06

P
re

ss
ur

e 
p’

 (
kg

/m
 s

2 )

Strouhal No. = 0.14, y/R1/2 = 1

Instability Wave Solution
Bailly

Bailly

0 10 20 30 40 50
x/R1/2

−8e−06

−6e−06

−4e−06

−2e−06

0e+00

2e−06

4e−06

6e−06

8e−06

P
re

ss
ur

e 
p’

 (
kg

/m
 s

2 )

Strouhal No. = 0.14, y/R1/2 = 1

Instability Wave Solution
Hu

Hu

NASA/CP—2000-209790 419



0 10 20 30 40 50
x/R1/2

−8e−06

−6e−06

−4e−06

−2e−06

0e+00

2e−06

4e−06

6e−06

8e−06

P
re

ss
ur

e 
p’

 (
kg

/m
 s

2 )

Strouhal No. = 0.14, y/R1/2 = 1

Instability Wave Solution
Li

Li and Thiele

0 10 20 30 40 50
x/R1/2

−8e−06

−6e−06

−4e−06

−2e−06

0e+00

2e−06

4e−06

6e−06

8e−06

P
re

ss
ur

e 
p’

 (
kg

/m
 s

2 )

Strouhal No. = 0.14, y/R1/2 = 1

Instability Wave Solution
Lockard

Lockard and Atkins

-8e-06

-6e-06

-4e-06

-2e-06

0

2e-06

4e-06

6e-06

0 10 20 30 40 50 60

P
re

ss
ur

e 
p’

x

Perturbation pressure along y = 1, Strouhal No. = 0.14

Instability Wave Solution
Agarwal            

Agarwal and Morris

0 10 20 30 40 50
x/R1/2

−8e−06

−6e−06

−4e−06

−2e−06

0e+00

2e−06

4e−06

6e−06

8e−06

P
re

ss
ur

e 
p’

 (
kg

/m
 s

2 )

Strouhal No. = 0.14, y/R1/2 = 1

Instability Wave Solution
Scheidegger, Wasistho BC
Scheidegger, Tam and Dong BC
Scheidegger, Freund BC

Scheidegger and Morris

NASA/CP—2000-209790 420



0 10 20 30 40 50
x/R1/2

−1.2e−05

−1.0e−05

−8.0e−06

−6.0e−06

−4.0e−06

−2.0e−06

0.0e+00

2.0e−06

4.0e−06

6.0e−06

8.0e−06

P
re

ss
ur

e 
p’

 (
kg

/m
 s

2 )

Strouhal No. = 0.14, y/R1/2 = 1

Instability Wave Solution
Stanescu

Stanescu, Ait-Ali-Yahia, and Habashi

0 10 20 30 40 50
x/R1/2

−8e−06

−6e−06

−4e−06

−2e−06

0e+00

2e−06

4e−06

6e−06

8e−06

P
re

ss
ur

e 
p’

 (
kg

/m
 s

2 )

Strouhal No. = 0.14, y/R1/2 = 1

Instability Wave Solution
Loh

Loh, Wang, Chang, and Jorgenson

NASA/CP—2000-209790 421





25NASA/CP—2000-209790

Computational
Aeroacoustics

Workshop Industry
Panel Discussion

Computational
Aeroacoustics

Workshop Industry
Panel Discussion





NASA/CP—2000-209790 425

Computational Aeroacoustics Workshop
Industry Panel Discussion

A panel discussion was held, comprising representatives from industry, and each panel member
gave a prepared presentation on their views and interests in Computational Aeroacoustics (CAA).
The panel members were asked to address one or more of the following issues or questions:

1. What is the status of CAA as it applies to your business and product line?
2. How has CAA helped solve problems for your business in the past?
3. How are you implementing CAA in your organization?
4. What direction would you like CAA to go to provide tools useful to your business?

The following panel members participated:

1. Don Weir, AlliedSignal
2. Wesley Lord, Pratt &�Whitney Aircraft
3. Mahendra Joshi, Boeing Company
4. Bill Dalton, Rolls Royce-Allison
5. Tom Dong, Lockheed-Martin
6. Phil Gliebe, GE Aircraft Engines

The participants gave approximately 20-minute presentations, followed by questions from the
audience.  The paragraphs below summarize the highlights and significant points made by the
panel participants.  The Appendix to this summary contains the presentation charts provided by
each presenter.

Phil Gliebe – GE Aircraft Engines
Areas where CAA can help include (1) turbomachinery noise analysis, (2) jet noise analysis, and
(3) combustor noise analysis.  CAA has the potential to help in resolving physical modeling
issues which seemingly escape resolution by analytic and/or classical numerical methods.
Specific examples include (1) the relative roles of dipole and quadrupole sound sources in noise
generated by gust-blade row interaction, (2) flight effects on jet noise and attendant wind tunnel
or free-jet corrections of scale model jet test data to the flight condition, (3) duct propagation with
flow gradients, variable wall geometries and bifurcations, and (4) duct wall liner impedance
modeling and duct inlet and exit transmission/reflection effects.  There is also a need for
additional benchmark experiments for validating CAA methods and codes, as the codes become
capable of analyzing more complex problems for which no simple analytical or classical
numerical solutions exist.  Finally, there is concern about the ability of industry to implement,
train users, and deploy into the design community CAA tools, which are by nature very complex.
Issues that need to be addressed include compatibility with existing design tools, grid generation,
geometry modeling, CFD codes, etc.  These tools must be robust and cost effective, and have to
be consistent with available computing capacity.

Don Weir – AlliedSignal
The acoustic design of aircraft engines has several objectives for noise reduction.  These include
community noise certification, guarantees to airline customers, noise complaints from the
community, local airport rules and aircraft interior passenger and crew noise exposure.  Testing of
various design options can be very expensive. CAA tools potentially can reduce the amount of
testing required if they can be used to down-select the options with confidence.  With a good
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analysis tool, a full matrix Design of Experiments (DOE) evaluation can be made to develop the
optimum design.  Specific areas where CAA tools may be able to contribute are (1) mixed-flow
jet exhaust noise, (2) fan multiple-pure-tone (MPT) noise, and (3) auxiliary power unit (APU)
noise.  APU systems have unique inlet and exhaust configurations, which are prone to flow
distortions and unsteady flows and separations, and therefore have the potential for creating
additional noise.  As a final note, CAA codes and methods are very complex, and therefore are
difficult to import and deploy in a typical product design environment.

Wesley Lord – Pratt &�Whitney Aircraft
Future aircraft engines are envisioned to have much higher bypass ratio cycles than current fleet
engines, and thus fan noise is likely to be the dominant noise source.  Thus CAA development in
fan noise modeling would be most useful.  In the narrow view of CAA, i.e., actual time-accurate
computation of the sound field using discretized formulations of the basic fluid dynamic
equations, there has not yet been an impact of CAA on aircraft engine product design.  In the
broader view, however, where CFD tools, and in particular unsteady CFD tools such as the
LINFLUX code are used to model acoustic phenomena, there has been significant utilization of
CAA in product development.  The current paradigm for turbomachinery acoustic design
(especially fan design) is as follows:

Geometry Æ 3DCFD Æ Noise Model Æ Computed Noise

This paradigm has been used to successfully predict fan tone noise characteristics.

Areas where CAA could help quantify important noise-generation phenomena include the
following: (1) airfoil self noise, (2) noise from 3-dimensional nozzle geometries, (3) realistic
airfoil shapes and high Mach number simulation for blade row noise analysis, and (4) fan rotor tip
clearance effects on noise.

Mahendra Joshi – Boeing Company
CAA could be a useful tool for analysis of aircraft landing gear noise, auxiliary air system
exhaust valve noise, and “unexpected” tones from various aircraft surfaces, cavities, joints,
protuberances, control surfaces on the wings and stabilizers, etc.  There is not always a need to
evaluate far field noise, as many aircraft noise problems are near field problems, and resolution of
the problem in the near field also solves any associated far field problem.

Bill Dalton – Rolls Royce-Allison
CAA is today where CFD was 15 years ago, a promising technology that is just beginning to
show potential.  Today, CFD is now a standard analysis tool in aircraft and engine product
design, and it can be speculated that 15 years from now, CAA will also be a standard analysis
tool.  Specific technology areas where CAA in the “broader view” has helped include (1) inlet
shape effects, (2) fan blade shape effects on MPT noise, and (3) installation effects on propeller
noise.  Relative to the usefulness of CAA methods in the “narrow view,” this depends on the
problem being addressed.  Whether CAA is an appropriate tool for problem solving depends on
how long you have to solve the problem, how serious is the problem, and how good is the answer
going to be with the tool used.  The problem itself (and its consequences if not solved) dictates
the level of sophistication of the tools used to address it.  It would be useful to quantify the
domain of applicability of linear vs. nonlinear CAA methods, so that some guidance may be
provided for the complexity of the method required to address specific problems.  Two specific
technical areas where CAA may be useful are (1) non-axisymmetric duct geometries and (2)
shear layer propagation.
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Tom Dong – Lockheed-Martin
Lockheed-Martin is actively pursuing development of the Tam DRP scheme for product
applications using multi-domain, multiple-time step approaches.  Improvements in computational
efficiency are felt to be very important.  Some problem applications of interest for utilization of
CAA methods are jet screech, and payload and weapons bay cavity noise and acoustic response.

Summary:
The industry panel consensus was that CAA has made significant progress in developing codes
and solution methods, which can address flow conditions and geometries of interest to the
industry community.  The CAA research and development community is encouraged to continue
development of this important and potentially fruitful technology area.  Key technical issues are
computational efficiency, correct modeling of boundary conditions for a high fidelity simulation
of a small amplitude of acoustic waves, and the capability to model high frequencies and complex
geometries.  Eventually, preferably sooner than later, CAA codes and tools need to recognize and
deal with the issues of compatibility with industry design systems, and must embody robustness
so that generating accurate, believable solutions do not always require that a CAA expert be the
only user.  It is also important to recognize and appreciate that CAA still holds out the promise
that it can provide quantitative evaluations of acoustic phenomena that defy useful analysis by
existing methods and techniques.
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4. “Use of Computational Methods for Noise/Vibration Problems,” K. Viswanathan and M.K.

Joshi, Boeing Commercial Airplane Group, November 8-10, 1999.
5. “Industry Panel Discussion,” William N. Dalton, Rolls-Royce Allison, November 9, 1999.
6 .  “Industrial Applications of CAA,” Tom Dong, Lockheed Martin Aeronautical Systems,

11/09/1999.
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Industry Panel Session
Aircraft Engine Acoustics

Philip R. Gliebe
Robert E. Kraft

GE Aircraft Engines

Areas Where CAA Can Help

• Turbomachinery Noise Analysis

• Jet Noise Analysis

• Combustor Noise Analysis

NASA/CP—2000-209790

Resolving Physical Modeling Issues Which Seemingly Escape
Resolution By Analytic and/or Classical Numerical Methods:

Example:

The Roles And Contributions Of “Dipole” Sound and Quadrupole” Sound
Sources in the Noise Generated By Blade Rows In Response To An
Incident Gust

Can a “CAA” Analysis of a Model Problem of This Type Identify,
decompose, resolve, etc., the existence of “dipole” and “quadrupole”
sound sources?  What is the real blade row unsteady response - effective
“Sears Function” - vs. Mean Flow-Gust Interaction?

Develop A Better Understanding of Acoustic Phenomena Which
Defy Analytic Treatment Without Employing Severely Limiting
Approximations or Simplifications:

Example 1:

Flight Effects On Jet Noise . . . . .
• Wind Tunnel Data and Free-Jet Corrections for Distributed Source Jet

Noise Measurements
• Correcting Static Engine Jet Noise Data To Flight

Can a “CAA” Model Problem be Constructed To Develop A More Accurate
Method For Extrapolating Static Data and Wind Tunnel Data To Flight?

429



Develop A Better Understanding of Acoustic Phenomena Which
Defy Analytic Treatment Without Employing Severely Limiting
Approximations or Simplifications, Cont’d.:

Example 2:

Duct Propagation With Complex Geometry and Flow Gradients . . . . .
• Variable Inner and Outer Wall Radius
• Radial Bifurcations and Struts
• Radial and Axial Flow Velocity and Pressure Gradients

Can A “CAA” Model Problem be Constructed To Quantify and Understand
Complex Duct Modal Pattern Behavior?  Is “Duct Modes” the Right
Physical Paradigm?

Develop A Better Understanding of Acoustic Phenomena Which
Defy Analytic Treatment Without Employing Severely Limiting
Approximations or Simplifications, Cont’d.:

Other Examples:

Duct Treatment Impedance Predictions  -  Time-Domain Models

Inlet and Exhaust Nozzle Transmission and Reflection Phenomena

Component Resonance and Instability Phenomena
• Combustors
• Cavities
• Rotating Disk Spaces
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Define Benchmark Experiments Which Can Be Used To:

• Validate CAA Methodologies

• Provide Key Insights into “Sticky” Modeling Issues - e.g., Boundary
Conditions, etc.

• Complement Benchmark Exact Solutions

• Extend The Validation Range To Problems Where Exact Solutions Do Not
Exist

Industry, Universities and Government (NASA) Need to be thinking about
Providing Resources to Execute These Benchmark Experiments

Issues Related To Commercial Application of CAA Tools In Industry
(Implementation, Training and Deployment):

• Compatibility with Existing Tools – CFD, Grid Generation, Geometry Modeling,
etc.

• Complex Design Problems Often Require Solution In Short Time Frame, CAA
Tools May Require More Time To Use Than Is Available

• Robustness – Minimize “Tweaking” and Iteration of Solutions

• In-House vs. Outside Expertise – Designers May Not Have The Expertise To
Use Tools If They Are “Fussy” – Require Pampering To Get The Correct
Solutions – May require Outsourcing or Consulting Expertise

• Cost Effectiveness – Can CAA Replace Costly Testing?  Is the Technical
Advantage Relative To Standard Methods Worth the Investment?

• Will Computing Capacity Limitations Constrain Use As A Standard Tool?
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Relevance of CAA to Regional and Business
Aircraft Engine Design

Donald S. Weir

Why is CAA Relevant?

• Noise is an important design objective
– Customer guarantees

– Certification

– Operator complaints

• Testing is expensive
– trial and error doesn’t always give expected results

– limited in number of configurations

• Computational models are a key element of design
– Makes “Design of Experiments” techniques feasible

– Obtain insight into root causes of problems

Want to use CAA tomorrow like we use CFD today!

AlliedSignal Engines & Systems

NASA/CP—2000-209790 433



Three Examples

• Turbofan Engine Jet

• Turbofan Engine Fan

• APU installation

Full Scale Mixer Demonstration
Three Test Configurations

TFE731-40 nozzle baseline
Advanced Solid Mixer
Advanced Porous Mixer

AlliedSignal
San Tan
Acoustic

Test
Facility

• 18 Lobes
• 75% penetration
• 5% porosity
• lobed centerbody
• cutback core mixing lobes
• highly cutback centerbody lobes
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MGB Analysis of Full Scale Mixer
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Fan Noise Prediction
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• Rotor/Stator Interaction Noise
• Broadband Noise
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Flow Through APU Inlet Ducting Has Significant Effect
On Installed Noise

Plenum

Diffuser

Inlet
Opening

Load Compressor Inlet Core Compressor Inlet

Baffle

FOD
Screen

High Mach
Number at
Lip Increases
Noise

Axial and Lateral
Distortion Affect
Compressor Noise
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Some Fan Prediction Results
• Rotor/Stator Interaction Noise
• Far Field Propagation
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Measured Effect of Inlet Mach Number and Distortion

CFD gives qualitative comparisons but
quantitative prediction not currently available
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Conclusions

• Noise is an
important design
objective

• Computational
models are a key
element of design

• Want to use CAA
tomorrow like we
use CFD today!
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An Industry View of CAA

W. K. Lord
Pratt & Whitney

PW6000

PW8000

Subsonic-transport engine noise

fan tone noise
fan broadband
jet noise
other turbomachinery noise (LPC,LPT)
combustor noise

Design Trends

higher BPR cycles 
swept fan rotor or geared fan
swept FEGV
mixed-flow exhaust 
     or separate-flow with tabs/chevrons
extensive use of computational methods for 3D aero,structures,noise
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What is CAA?

Narrow Definition: compute unsteady pressure
at every point in the field

Examples: linearized-Euler for fan tone
LES for jet

Impact on design:  none to date
still in development phase  

What is CAA?  #2
Broad definition:

component geometry + 3D CFD + noise model = component
noise

Examples: V072/TFANS fan tone
BFANS fan broadband
KMGB, Tam, Morris jet noise models

Impact on design:  set blade/vane airfoil counts
contributed to development of swept FEGV
TFANS/BFANS initial design studies ‘99 
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Fan Rotor/Stator Interaction Tone Noise
First-generation models in place (V072/TFANS)
Linearized Euler results look promising (LINFLUX)

€ Acoustic Modal Analysis at 2 BPF Compared to Fan Rig Data

Inlet PWL(dB) Exit PWL (dB)
Mode Predicted Predicted Data

1,0 112.3 121.2 122.1
1,1 106.9 120.4 121.4
1,2 114.9 119.2 119.4
1,3 105.2 112.5 110.1
1,4 -- -- 

Total PWL(dB) 117.5 125.4 126

• potential for FEGV airfoil shape aero/acoustic optimization

Fan Broadband Noise Sources

Rotor
Wake Turbulence

With Vane

Stator  B.L. Turbulence
“Self” Noise

Interaction of Inflow
Turbulence With
Rotor Tip/Hub

Rotor B.L. Turbulence
“Self” Noise

Interaction of Endwall
Turbulence With

Stator Tip/Hub

BFANS modeling
noise due to turbulence inflow: CFD turbulence +airfoil 

acoustic response model
airfoil self noise:  empirical model  (need help here!)
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Can LES of trailing edge flow
help develop improved self noise models?

Ref:

M. Wang
“Progress in large-eddy simulation of trailing-edge
turbulence and aeroacoustics”

Center for Turbulence Research
Annual Research Briefs 1997 

Jet Noise
methods for 3D mixing devices g j j
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Near term:   RANS CFD  +  noise model

Longer term:  large-eddy simulation
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CAA Direction
Expectation is that acoustics design tools will be merged

into component design systems

First-generation tools based on 3D CFD + noise modeling

Industry likes real airfoil shapes better than flat plates

Work needed on understanding/modeling airfoil self noise

Jet methods for design of 3D mixing devices, 
including assessment of high-frequency mixing noise
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Use of Computational Methods for 
Noise/Vibration Problems

K. Viswanathan & M. C. Joshi
Boeing Commercial Airplanes Group

What does CAA mean to Boeing?

How is CAA being implemented?

• How has CAA helped solve problems in the past?

• What direction should CAA take to provide 
useful tools? 

• What types of problems should be tackled? 

• Provide guidance to CAA community 
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Problems of interest to Boeing

• Cabin noise
- turbulent boundary layer noise
- engine vibration related noise
- shock-associated noise
- equipment noise and noise squawks

• Community noise
- airframe noise
- jet noise
- fan noise
- acoustic liners

(Noise modeling & control activities underway)

Flow field computations 

• Use unsteady CFD to gain insights

• Directed at understanding the physics

• Develop & implement suitable solutions

• Typical examples
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Preliminary DES:  surface pressure & streamwise vorticity

• Unsteady flowfield & surface pressures from CFD

• Radiated noise from acoustic analogy

Aeroacoustics and Fluid Mechanics
Boeing Commercial Airplane Group

NASA

Courtesy of B. S. Lazos
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Shock-cell noise

• Emphasis on interior noise

• Current method:  Tam’s model with empirical
corrections

• CAA approach: (Dr. S. Lele, Stanford U.)
- detailed flow field with RANS
- characterization of large structures with PSE
- shock-cell/turbulence interaction with DNS

• Ongoing data analysis:
- evaluate/interpret surface pressure data
- develop prediction procedure for pressure field
- develop cross-spectra input for FEM analysis

Equipment noise / Noise squawks

• Observed in product testing/pre-delivery flights

• Frequently, aero tones due to flow instabilities in 
on-board equipment, airframe components, etc.
(vortex shedding, cavity tones, valve & pump noise)

• Potential application of computational tools
- diagnose problem
- provide design changes to eliminate problem
- define “noise-free” design space/guidelines

• Typical examples

• Annoyance & acoustic loads on nearby structures

NASA/CP—2000-209790 448



Pressure, psi

Aeroacoustic Analysis: Outflow Valve
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Requirements of computational tools for noise squawks

• Accurate prediction of amplitudes not always 
necessary; ability to determine if a design change 
can eliminate/reduce noise more important

• Many problems are tonal & may be more suitable for 
advanced computational methods

• Near field unsteady pressures provide useful info.; 
far field solutions not always required

• Validation necessary

• Rapid turn-around (overnight including grid 
generation) required for squawk problems
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Rudder “tone” problem

• Unsteady CFD established vortex shedding

• Installed rubber ‘boot’ to eliminate problem

Concluding remarks

• CAA has made impressive strides

• Absolute predictions - not possible in near term

• Acceptable/realistic expectation:  

- ability to assess change in noise due to 
change in geometry 

- gain insights to the physics

• Use CFD/CAA as diagnostic tools
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Third CAA Workshop on Benchmark Problems

Industry Panel Discussion

William N. Dalton
Rolls-Royce Allison

Current predictive technology status- gas turbine engines

Continuing reliance on empirical data base

Limited application of numerical methods to tones
diagnostics
evalution of nonconventional control concepts

Computation of broad band noise requires significant progress to
reach application stage
Goal- Integration of numerical methods into the overall strategy of
noise prediction
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In a gas turbine engine, methods must capture:
1.Mean Flow Aerodynamic environment

2. Time dependent flows associated with the acoustic process of interest

Existence multiple wave numbers

Resolution of high frequencies

Complex internal geometry and flow field

Existence of both bounded(internal) and unbounded(external) 
domains

Existence of convected and propogating disturbance fields
Presence of relative motion between adjacent domains

Examples of Rolls-Royce Allison applications of CAA

1. Effects of inlet geometry on tone radiation- diagnostic

2. Reduction in fan rotor generated shock noise- predictive

3. Installation effects on turbopropeller noise- evaluation of
corrective action for existing problem
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Effects of inlet geometry on fan tone radiation
Substitution of flight configured inlet for bellmouth inlet 
produced reductions in fan BPF tone level and directivity in
forward quadrant during static engine testing

Both inlets were hardwall (no acoustic treatment)

Directivity shifts consistent with change in duct spinning 
mode content radiated to far field

Sensitivity to rotational speed

Numerical solution for radiation field used to determine spinning
order content by matching radiation pattern

linearization of full potential equation about nonuniform
mean flow

Acoustic/flow interaction within duct
Diffraction around inlet leading edge
Limited to axisymmetric mean flow
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Reduction in fan rotor generated shock noise
Buzzsaw noise increase at part speed result of shock 
spillage from fan rotor

Rotor sweep can be used to control rotational speed at 
which shock moves out of passage

Solution of 3-D RANS Equations for rotor passage coupled
to potential flow radiation solver to determine far field
sensitity of shock induced noise to rotor sweep

Restricted to harmonics of BPF

Evaluation of installation effects on turbopropeller noise
Penetration of BPF harmonic tones into cabin exceeded 
customer requirements.  Levels incident on fuselage not 
symmetric.

Installation effects produce assymetry in propeller noise
Propeller angle of attack
Propeller interaction with nacelle, wing, fuselage

Solution of 3-D unsteady flow around one half of the airplane
used to diagnose problem
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CAA is already used to solve development problems
Diagnostics
Assessment of new component configurations
Solution of field problems

Examples illustrate that problem dictates level of model
sophistication

Small perturbation approximations
Full non-linear fluid equations
Mixture

Need: Accelerate the transition from research to application

Areas for technical effort important to engine applications
Improve existing models for tone radiation through a shear
layer

Downstream fan tone radiation

Application and refinement of methods to non-axisymmetric
geometries

drooped and scarfed inlets
ducts of non-circular cross section

Propagation in lined ducts
Modeling of segmented and non-axisymmetric liner
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Integration of linear and nonlinear solution methods
Establish domains and parameter ranges within which

small perturbation methods applicable

Clearly determine where differences result from numerical 
implementations and physics

Improved boundary methods at interfaces
Proper transfer of convecting and radiating energy in both 
directions

Relative motion between interfaces
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BYBY

Tom DongTom Dong

Lockheed Martin Aeronautical SystemsLockheed Martin Aeronautical Systems
Marietta, GeorgiaMarietta, Georgia

Industrial ApplicationsIndustrial Applications
of CAAof CAA

CAA Code Development by LMAS/FSU

(1) High Accuracy DRP Finite Difference Algorithm

(2) Euler Computations (Navier-Stokes Capability Is Under
Development)

(3) A Large Set of BCs for Acoustics Computations

(4) Multi-block Grid Capability Interfaced w/ Gridgen for
Complex Geometry

(5) Multi-domain, Multiple Time-Step (MDMT) Method to
Enhance Efficiency

(6) Implementation of MPI for Parallel Calculations

(1) High Accuracy DRP Finite Difference Algorithm

(2) Euler Computations (Navier-Stokes Capability Is Under
Development)

(3) A Large Set of BCs for Acoustics Computations

(4) Multi-block Grid Capability Interfaced w/ Gridgen for
Complex Geometry

(5) Multi-domain, Multiple Time-Step (MDMT) Method to
Enhance Efficiency

(6) Implementation of MPI for Parallel Calculations
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APPLICATION OF DRP/CAA CODE -
Airframe Noise Source Mechanism Analyses (NASA AST)

Flap Side-edge NoiseFlap Side-edge Noise

Flap Spanwise
Cross-section
15%C from LE

Acoustics Contours

Slat/Wing NoiseSlat/Wing Noise

Wing

APPLICATION OF DRP/CAA CODE -
Screech Tones From Supersonic Jets (FSU)

Unsteady RANS Simulation w/ DRPUnsteady RANS Simulation w/ DRP
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Potential Aeroacoustics Applications

(a) Prediction - Acoustic loads and far-filed noise

from engines, airframes, and propellers.

(b) Reduction - Source mechanism investigation

(a) Prediction - Acoustic loads and far-filed noise

from engines, airframes, and propellers.

(b) Reduction - Source mechanism investigation

Potential Aerodynamics Applications

(a) Flow separation control w/acoustics for high-lift

systems (e.g. Seifert and Pack AIAA J.Sept. 1999).

(b) Unsteady flow environment around open payload

bays (store separation, cavity)

Acoustics is, a critical part of the unsteady
phenomena, not necessarily the end product

(a) Flow separation control w/acoustics for high-lift

systems (e.g. Seifert and Pack AIAA J.Sept. 1999).

(b) Unsteady flow environment around open payload

bays (store separation, cavity)

Acoustics is, a critical part of the unsteady
phenomena, not necessarily the end product
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Industrial Needs:

We Need CAA CODES with:

(1) Current CAA Accuracy (Algorithms, BCs)

(2) Current CFD Grid and Turbulence Capability

(3) All The Efficiency Enhancing Techniques:

Multi-domain, Multiple Time-Step Method

Parallel Computing

Multi-grid Technique

Good Programming Skills

(4) Flexibility For Future Modification (Modules)

We Need CAA CODES with:

(1) Current CAA Accuracy (Algorithms, BCs)

(2) Current CFD Grid and Turbulence Capability

(3) All The Efficiency Enhancing Techniques:

Multi-domain, Multiple Time-Step Method

Parallel Computing

Multi-grid Technique

Good Programming Skills

(4) Flexibility For Future Modification (Modules)

Difficulty:

Block  Communication:

The large stencils associated with CAA algorithms
make the communication at block interface difficult

Most CFD Algorithms Have Reduced Time
Accuracy At Interfaces
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Suggestions:

€ Develop Modular CAA Codes using the Currently
Existing and Well-tested Methods w/ a coordinated effort
among Government, Industry, Academia, Research
Institutes.

• Validate Various CAA Techniques

• Define the Needs For Future CAA Development
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The proceedings of the Third Computational Aeroacoustics (CAA) Workshop on Benchmark Problems cosponsored by
the Ohio Aerospace Institute and the NASA Glenn Research Center are the subject of this report. Fan noise was the
chosen theme for this workshop with representative problems encompassing four of the six benchmark problem catego-
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computational results for the cavity noise problem were compared to experimental data. All the other problems had
exact solutions, which are included in this report. The Workshop included a panel discussion by representatives of
industry. The participants gave their views on the status of applying computational aeroacoustics to solve practical
industry related problems and what issues need to be addressed to make CAA a robust design tool.


	Table of Contents
	Preface
	BENCHMARK PROBLEMS
	Category 1—Internal Propagation
	Problem 1: Propagation of Sound Waves through a Transonic Nozzle
	Problem 2: Shock-Sound Interaction

	Category 2—Rotor Noise
	Category 3—Sound Generation by Interaction with a Gust
	Problem 1: Single Airfoil Gust Response Problem
	Problem 2: Unsteady Response of an Isolated Finite Span Swept
Airfoil to an Incident Gust
	Problem 3: Unsteady Response of a Rectilinear Swept Cascade to an Incident Gust

	Category 4—Fan Stator with Harmonic Excitation by Rotor Wake
	Category 5—Generation and Radiation of Acoustic Waves from a 2-D Shear Layer
	Category 6—Automobile Noise Involving Feedback

	ANALYTICAL SOLUTIONS
	Propagation of Sound Through a Transonic Nozzle
	Solution of Category 1, Problem 2
	Rotor Noise
	Single Airfoil Gust Response Problem
	Analytical Solution of the Category 3, Benchmark Problems 2 and 3                  
	Numerical Results of Lifting Surface Theory
	Solution to the Category 5 Problem: Generation and Radiation of Acoustic Waves from a 2D Shear Layer

	EXPERIMENTAL RESULTS
	Sound Generation by Low Speed Cavity Flows

	CONTRIBUTIONS OF WORKSHOP PARTICIPANTS
	Discontinuous Spectral Element Solution of  Aeroacoustic Problems
	Validation of a High-Order Prefactored Compact Scheme on Nonlinear Flows With Complex Geometries
	Applications of the Space-Time Conservation Element and Solution Element (CE/SE) Method to Computational Aeroacoustic Benchma
	Rotor Noise Radiation Using a Finite Element Method
	Results of Benchmark Problems for the Third Computational Aeroacoustics Workshop
	Computation of Transonic Nozzle Sound Transmission and Rotor Problems by the Dispersion-Relation-Preserving Scheme
	On Computations of Third CAA Workshop Benchmark Problems
	Solution of Third Computational Workshop Internal Propagation Problems Using Low Order Schemes
	Optimized Weighted Essentially Non-Oscillatory Finite Difference Schemes for Computational Aeroacoustics
	Adaptive Nonlinear Artificial Dissipation Model for CAA
	Solutions of Sound Wave Propagation and Shock-Sound Interaction Using the Optimized Upwind DRP Scheme and the CE/SE Method
	Essentially Non-Oscillatory Methods for Shock-Sound Interaction
	A Low Order and a High Order Solution for a Converging-Diverging Nozzle Problem
	Spectral Methods for Computational Aeroacoustics
	Computation of Generation and Radiation of Acoustic Waves in Supersonic Flows
	Numerical Solutions to the Third CAA Workshop Benchmark Problems
	Generation and Radiation of Acoustic Waves From a 2-D Shear Layer
	Generation and Radiation of Acoustic Waves From a 2-D Shear Layer
	Numerical Computation of the Generation and Radiation of Acoustic Waves From a 2-D Shear Layer
	An Application of the Quadrature-Free Discontinuous Galerkin Method
	Generation and Radiation of Acoustic Waves From a 2-D Shear Layer Using the CE/SE Method
	Aeroacoustic Computations of the Unsteady Flows Over a Rectangular Cavity With a Lip
	Computations of Self-Induced Oscillatory Flow in an Automobile Door Cavity
	A Parallel Numerical Simulation of Automobile Noise Involving Feedback
	Direct Numerical Simulation of Automobile Cavity Tones

	SOLUTION COMPARISONS
	Comparisons With Analytical Solution: Category 1, Problem 1
	Solutions to Category 1, Problem 2
	Comparisons With Asymptotic Solution: Category 2
	Comparison of Analytical and CAA Solutions Category 3, Benchmark Problem 1
	Comparison of Analytical and CAA Solution(s) Category 3, Benchmark Problem 3
	Comparisons With Analytical Solution: Category 5

	COMPUTATIONAL AEROACOUSTICS WORKSHOP INDUSTRY PANEL DISCUSSION
	Industry Panel Discussion
	Industry Panel Session Aircraft Engine Acoustics
	Relevance of CAA to Regional and Business Aircraft Engine Design
	An Industry View of CAA
	Use of Computational Methods for Noise/Vibration Problems
	Third CAA Workshop on Benchmark Problems
	Industrial Applications of CAA


